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Abstract This paper presents a novel method for active-vision-based sensing-system
reconfiguration for the autonomous surveillance of an object-of-interest as it travels
through a multi-object dynamic workspace with an a priori unknown trajectory.
Several approaches have been previously proposed to address the problem of sensor
selection and control. However, these have primarily relied on off-line planning
methods and rarely utilized on-line planning to compensate for unexpected varia-
tions in a target’s trajectory. The method proposed in this paper, on the other hand,
uses a multi-agent system for on-line sensing-system reconfiguration, eliminating
the need for any a priori knowledge of the target’s trajectory. Thus, it is robust to
unexpected variations in the environment. Simulations and experiments have shown
that the use of dynamic sensors with the proposed on-line reconfiguration algorithm
can tangibly improve the performance of an active-surveillance system.
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1 Introduction

The application of active sensing to surveillance problems has introduced on-line
sensing-system reconfiguration (also, referred to as sensor planning) as a key research
topic. Most recent work has focused on dynamic, multi-object environments, where
the system can provide autonomous surveillance of an Object-of-Interest (OoI).
Typically, these problems also include multiple obstacles (static or mobile) that may
occlude the OoI. Thus, surveillance is defined herein as the data-acquisition and
analysis process used for the recognition of the OoI or parameter estimation of the
features of the OoI.

An introduction to the general area of surveillance is presented first below
by examining past work on sensing-system reconfiguration for static and dynamic
environments. In this context, the exact problem to be solved is defined, and our
proposed solution is outlined in Section 2. Detailed simulation and experimental
results validating the algorithm are presented in Sections 3 and 4, respectively.

1.1 Sensing-System Reconfiguration in Static Environments

Traditionally, sensing-system planning has been utilized to configure a set of
sensors in a static surveillance environment. Such work has been categorized as
either “generate-and-test” or “synthesis” [1]. In generate-and-test methods, sensor-
placement plans are determined based on the task constraints by searching through
a set of (discretized) sensing-system configurations. For example, in [2] a single robot
moves a sensor to observe features on a stationary OoI. A discretized virtual sphere,
created around the OoI, represents all the possible poses for the sensor. Only poses
that are un-occluded and fit within the workspace of the robot are selected. Similarly,
in [3], the sensing-system planner determines the minimum number of viewpoints
(and, thus, sensor poses) to observe all features on an object. Herein, not only is the
OoI’s virtual sphere discretized, but, the surface of the OoI itself as well.

Synthesis methods determine sensing-system configurations by using the ana-
lytical relationship between task requirements and sensor parameters and, thus,
are highly application specific. For example, in [4], the sensing-system planner
synthesizes a region of viewpoints by first imposing a 3-D bound on the position of
the camera by each of the task constraints (e.g., field of view and focus, resolution).
The intersections of these bounds are considered to be regions of acceptable view-
points. Similarly, in [5], the system automatically determines the viewing direction
that allows the entire OoI to become visible while minimizing distortion in the
image. The system works by taking points along the outer edge of the OoI and
formulating uncertainties in sensor observations by data fusion and optimal sensor
placement. Another example is given in [6], where optimal 2-D sensor placements
are determined for a number of similar sensors. The algorithm positions sensors as
close to the OoI as possible, while the orientations of the sensors are found through
a closed-form solution that minimizes the area of the uncertainty ellipse associated
with the sensors’ observations. The system in [7] uses an off-line generate-and-test
method with an on-line synthesis method to optimally place dissimilar sensors (range,
intensity, and stereo cameras) for OoI inspection.
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1.2 Sensing-System Reconfiguration in Dynamic Environments

1.2.1 Single-Object Environments

Recently, there has been interest in sensing-system reconfiguration in dynamic en-
vironments, [8–10]. Most current systems address this problem by utilizing methods
developed for static environments. For example, the system proposed in [9] optimizes
sensor configurations off-line by discretizing time and treating each time instant as
a static case, utilizing the sensing-system reconfiguration method presented in [2].
This off-line approach requires the motion of the OoI to be known a priori with
high accuracy. The system presented in [10] uses an off-line heuristics method to
determine sensor motions in 2-D based on an a priori known OoI trajectory. An on-
line controller is later used to readjust sensor motions to account for deviations in
the actual OoI trajectory.

In contrast to the previous systems, the work proposed in [11] does not require a
priori knowledge about the OoI’s trajectory. The system discretizes the workspace
into a number of sectors and, once the OoI enters a sector, the sensors assigned
provide synchronous information about the OoI. The system in [12] utilizes multiple
sensors through an agent-based sensing method, where each mobile sensor’s path is
independently determined through a triangulation method. The system in [13] also
uses autonomous agents; however, unlike in [12], the agents negotiate to achieve
the necessary level of coordination for accomplishing the given sensing task, while
maximizing the amount of the target that can be observed at any given time. The sys-
tem in [14] combines sensor-placement constraints with the shape and current pose
of the OoI via a Bayesian network for task-specific sensing-system reconfiguration.
The Bayesian network is reconstructed continuously to reflect changes in the pose of
the target as determined by the active sensors. The derived sensing action maximizes
the amount of target visible while minimizing the sensing cost (sensor movement).

1.2.2 Single-Target, Multi-Object Environments

A multi-object dynamic environment, while much more relevant to real-world appli-
cations, is considerably more complex than the previous examples. In a single-target,
multi-object environment the system must perform sensing-system reconfiguration
based on a single OoI trajectory and multiple obstacles. Examples of such systems
were presented in [15] and [16]. Both works require the OoI and the surrounding
environment to be model 3D polyhedrons, so that constraints (such as occlusions)
can be determined at discretized time instants. Numerical optimization methods are
used to determine sensor locations at each time instant. The methods presented in
[17] and [18] use pre-determined constraints, such as occlusions, field of view, and
travel limits, to dynamically plan the motion of the single robot-mounted camera.
These sensing-system planners aim to avoid occlusions and maximize the camera’s
view of the target. Other systems, such as [19], use a combined algorithm, including
closed-form solution to the sensor placement problem. In this work, SIFT (Scale
Invariant Feature Transform) is used to detect the target object and to maximize
the number of features in the field of view of the final sensor solution. Finally,
other research has addressed the problem of shortest path planning. For example,
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in [20], the authors present a genetic algorithm for optimal sensor placement, using
the ‘Christofides algorithm’ for shortest path planning.

A detailed examination of the sensor-selection problem in multi-sensor systems
was presented in [21]. There, the authors sought to minimize the error in estimat-
ing the position of a target using a generic sensor model and an approximation
algorithm for sensor selection. It was determined that a relatively small subset of
a larger number of sensors can reduce uncertainty in a sensing process effectively.
Other issues, such as path planning for mobile robots (which can be viewed as
active sensors), have also been examined in the context of multi-sensor systems
[22, 23].

1.2.3 Multi-Target, Multi-Object Environments

In a multi-target, multi-object environment, sensing-system reconfiguration aims to
maximize the number of targets that are observed while minimizing the uncertainty
associated with the observations. Very little work has been done in this area, due to
the inherent complexity of the problem.

This paper focuses on the problem of single-target surveillance in multi-object
environments; and, thus, the problem of multi-target surveillance is beyond its scope.

1.3 Problem Definition

Surveillance was defined above as the observation of an OoI (or feature on an
OoI), where one seeks to maximize visibility. More specifically, the sensing-system
reconfiguration method must be able to cope with single-target (OoI), multi-object
dynamic environments, where occlusions may be present and both the OoI and the
obstacles may be static or moving at any time. In addition, the method should be
general enough to be applied to a variety of applications with minimal adaptation and
operate in an on-line mode. This paper proposes such a novel agent-based approach.
Prior to a detailed description of our sensing-system reconfiguration method, several
agent-based planning algorithms previously suggested in the literature are briefly
discussed below.

1.3.1 Agent-Based Sensing-System Reconfiguration

Recently, a number of agent-based approaches have been proposed for the problem
of real-time sensing-system planning. For example, in [24], the algorithm uses sensor
agents to track multiple moving targets, where an agent is considered to be a Pan-
Tilt-Zoom (PTZ) camera plus a dedicated computer. The agents scan the workspace
for a target and, once one is detected, they share the OoI information. Each
agent independently determines whether it should contribute to the surveillance
of this target or search for a new target. In [25] and [26], multiple mobile sensors,
modeled as separate agents, were used to detect and recognize targets. All agents
start by searching for a target and, once one is detected, agents negotiate among
themselves for assignment to the detected target. This algorithm, in contrast to that
presented in [24], utilizes purely cooperative agents.1 Performance is significantly

1Cooperative agents are those that work together to improve system performance rather than their
own performance.
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improved; however, complexity of the required conflict-management strategy is also
increased.

In our work, an agent-based approach is also used for sensor selection and posi-
tioning in a multi-object environment. In contrast to the abovementioned systems,
however, external virtual agents are used for conflict detection and management.
The use of virtual agents improves global behavior of the multi-agent system and
simplifies the conflict-management strategy. This can be accomplished while still
maintaining near-optimal performance for object visibility. The virtual agents, as
described later, are able to ensure this by providing a more logical division of the
work within the system, better suiting the sensing-system reconfiguration process.

Finally, our system also differs from those described above in that the unused
sensors are not utilized for target detection but are instead positioned in anticipation
of future service requirements. This placement, as will be shown later, improves the
likelihood that the unused sensors will be at poses with higher OoI visibility in the
future. Thus, our algorithm follows a probabilistic framework, albeit a simple one.
Overall, the goal is to maintain the quality of information for the task at hand while
improving the responses to future OoI maneuvers.

2 Sensing-System Reconfiguration Strategy

The proposed sensing-system reconfiguration strategy is designed to provide esti-
mates of an Object-of-Interest’s (OoI) parameters at predetermined times along its
trajectory. These predetermined times are referred to herein as demand instants, ti.
The spacing of demand instants is application-specific, but will generally coincide
with acquisition instants for the sensor/camera. Care must be taken to ensure that
the dynamic capabilities of each sensor are not overly restricted by a small demand
instant spacing – some fractional multiple of the sensor acquisition rate may be
used. Similarly, sufficient time to process a reasonable number of alternatives must
be given. However, if the spacing is too large, response times will increase and
stability will decrease. On the average, demand instant spacing will be uniform (equal
spacing), with the period chosen a priori. However it would be possible for a system
to adjust the spacing online, and to use uneven spacing, so long as the system is able
to track processing/decision time accurately.

It is also assumed that the pose of the OoI at a particular demand instant is
predicted from observations of the OoI motion, rather than known a priori. In
general, the estimation of the OoI pose at a demand instant will change (and its
corresponding uncertainty will diminish) as the prediction accuracy improves over
time; however, the demand instant remains constant.

If the sensing system contains multiple redundant sensors, a subset of these may
be sufficient to satisfy the sensing requirements of a demand instant. Namely, a
sensor-fusion process does not need to combine the information from all of the
sensors in the system. Instead, a subset of sensors, herein referred to as a fusion
subset, may be selected to survey the OoI at a particular demand instant. This
allows remaining sensors to be reconfigured in anticipation of future use. In this
context, our previous work addressed this dispatching problem using heuristics and
a blackboard approach [18]. In this paper, a novel agent-based approach is applied
to the problem at hand. As will be shown, this approach offers an improved logical
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division of the task at hand. The use of virtual agents is a natural extension, in that
one attempts to ‘describe’ the overall behavior desired rather than directly solving
the underlying dynamics. In order to allow for the generality of the method, the
actual form of communication between the agents is not specified in the proposed
general algorithm, as it does not need to be. Several alternatives will exist, depending
on the physical implementation. In general, low latency, guaranteed delivery, and
sufficient bandwidth are desirable properties in selecting a communication medium
for this algorithm.

2.1 Quality of the Sensing Data

Integral to sensor dispatching is an estimate of the quality of data that each sensor
can provide for the current demand instant and for the span of a rolling horizon
of several demand instants. These estimates are used in our algorithm to select the
specific sensors for inclusion in the fusion subset and determine their desired poses,
given their current poses in the workspace and their motion capabilities.

A visibility measure, that is inversely proportional to the measurement uncer-
tainty, is used as a quantitative measure. The model-based visibility measure provides
a more robust basis for sensor selection than simple distance measures or a line-of-
sight test. The visibility measure for the j th sensor servicing the ith demand instant
is defined herein as,

v ji

⎧
⎨

⎩

1

‖R‖ I f target is unoccluded

0 else
, (1)

where R is the covariance matrix associated with the sensor measurement.
For the cameras that are used in our experimental setup, R is a function of six

variance parameters: three for the Cartesian position of the target OoI (x, y, z)

and three for its orientation (nx, ny,, nz). Our variance-analysis experiments led to
the conclusion that only two controlled sensor parameters significantly affect the
measurement variances, Appendix A: the Euclidean camera-to-target distance, d,
and the bearing of the camera with respect to the target, L:

d = ∥
∥op − sp

∥
∥ , (2)

where op is the target position and sp is the sensor position, and

θ = cos−1 (on ◦ τ ) , (3)

where on is the unit vector corresponding to the target orientation and τ is the
viewing direction of the sensor,

τ = op − sp
∥
∥op − sp

∥
∥
. (4)
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Thus, the visibility measure for a sensor over the span of a rolling horizon is
defined as,

v j =
m∑

i=1

aivij, (5)

m∑

i=1

ai = 1, (6)

where m is the number of demand instants in the rolling horizon and 0 ≤ ai≤ 1 is the
weight of the ith demand instant. The weight factor is constant for all the sensors and
represents the uncertainty in the predictions of the future target poses. Although the
weight factor ai is user specified, and depends on the surveillance system at hand, in
general itsvalue would decrease as predictions of target poses are made further into
the future. The weights are normalized, as in Eq. 6. In order to choose these weights
in a real-world application, one would perform controlled, repeatable experiments
with the final system to determine the trade-off of future prediction necessary for
best performance.

One possible way to ensure a minimum level of quality is to impose a con-
straint that each target must be serviced with a combined visibility greater than a
threshold, vmin, at every demand instant. The actual value chosen would depend on
workspace conditions, for example, the number of objects. Such a constraint can
easily be imposed and monitored by the referee agent. It must be noted that this
is just an example constraint, although it is representative of one used in an actual
implementation.

2.2 Coordination Strategy

Dispatching can be accomplished using two complementary strategies: A coordina-
tion strategy to determine the subset of sensors to be used, and a positioning strategy
to select the optimal pose of each sensor for any demand point being serviced.

The proposed agent-based system consists of multiple sensor agents, a referee
agent, and a judge agent. Each sensor agent tries to maximize its own performance
over the span of the rolling horizon. Although not directly controlled by a centralized
controller, the sensor agents must abide the external rules of the environment
monitored and enforced by two virtual agents. The rules are set to ensure the
collective behavior of the sensor agents exhibits the desired system behavior.

2.2.1 Sensor Agents

The sensor agent is responsible for choosing the demand instants that the associated
sensor will service and for determining its best poses in terms of the sensor’s
performance metric (i.e., visibility) over the span of the rolling horizon. If a demand
instant is not serviced, the sensor would have zero visibility for that demand instant,
however, it would allow more time for the sensor to maneuver for the next demand
instant.

Each sensor agent searches through all possible combinations using a depth-first
approach (e.g., [1, 1, 1] is a combination referring to servicing all demand instants
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in a 3-demand-instant horizon). The total search space for a sensor agent is 2m,
where m is the number of demand-instants in the rolling horizon. However, certain
combinations would always have a lower visibility than others and, therefore, might
not have to be searched. For example, if combination [1, 1, 1] is achievable (not
occluded), then, the combination [1, 1, 0] would not have any advantage for that
sensor since it would have a lower visibility; thus, it does not have to be ‘searched.’

At each combination searched, the sensor agent determines the best achievable
poses to service the selected demand instants through the positioning strategy
outlined in Section 2.3 below. Initial sensor poses (as well as the number and type
of sensors, and their off-line placement) can be determined using traditional off-
line methods, such as those summarized in [1]. Using these poses and the OoI’s
predicted locations, the sensor agent determines the expected, achievable visibility
for each combination. The sensor agent, then, evaluates the combinations searched,
to determine acceptable solutions. Acceptable solutions are constrained by the
following two internal rules:

1. A demand instant cannot be serviced if it is occluded.
2. Combination [0, 0, 0, . . . , 0], representing a sensor not being assigned to any

demand instant, is only considered if all other combinations are occluded.2

Next, the sensor agent ranks all acceptable combinations in a descending order
of combined visibilities. The rth ranked acceptable solution for the j th sensor is
denoted herein as S jr. The sensor agent sends the first ranked acceptable solution,
S j1, to the referee agent. During this process, processing time is strictly tracked, and
the search is terminated early, if necessary.

It is important to note that this ranking demonstrates the framework for the
positioning of unassigned sensors. Let us consider the same example as above, with
a 3-demand-instant horizon. Let us assume that a [1, 0, 1] combination is chosen
and is achievable, which means that the sensor will service the first and third demand
instants, but not the second. After achieving the pose necessary to service the current
(first in the rolling horizon) demand instant, the sensor is unassigned for the next
demand instant. Therefore, the sensor agent would ‘look ahead’ in the horizon and
determine its next assigned demand instant, the third in this case. For this instant, an
expected OoI position, Ex, can be determined from the motion model. The predicted
position can be determined internally (independently) by the sensor agent, or may
be provided by an external tracking/prediction agent. The motion path during the
unassigned demand instant would, therefore, be chosen as the one that will produce
the maximum object visibility given the expected OoI position. Thus, for unused
demand instants the system would seek to improve the potential (expected) visibility.
Namely, the uncertainty would be directly proportional to the uncertainty of the
underlying motion model. One can note that, this process is examining the expected
rather than the actual visibility. If the assumption that expected visibility is equal to
actual visibility at a future demand instant holds (i.e., the underlying motion model
is accurate), then, we would obtain optimal behavior. In most cases, however, one
would need to accept that the solution is actually a near-optimal one.

2The [0, 0, . . . , 0] combination allows the sensor to simply always follow the target so that it may be
used in the future.
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2.2.2 Referee Agent

The referee agent monitors the ‘intentions’ of the sensor agents and ensures that no
external rules are violated. These external rules would depend on the surveillance
task at hand and are, thus, user specified. If the referee agent detects a violation
of the external rules, it initiates the judge agent in order to resolve the conflict.
It is important to note the logical division that takes place. By abstracting and
encapsulating the rules from the judge agent, we greatly reduce its complexity. More
importantly, the generality of the algorithm is increased. The judge agent can be
specified without a complete declaration of the external rules. Furthermore, once
a system using this method is in place, its modifiability is greatly enhanced if the
external rules of the system are not intertwined with those of the judge. A small
change in the external rules does not necessitate a complete revision of the judge
implementation. Obviously, this division is primarily a logical one; it does not mean
that the agents need to be physically separate, thus, the communication overhead
need not be overly affected.

As a simple example, in this work, the following external rule is defined to ensure
the sensors are well distributed among the demand instants of the rolling horizon:

• At least one sensor must be assigned to each demand instant.

This was the only rule applied to the experiments presented in Sections 3 and 4.
This rule shows the use of the referee agent without unnecessarily complicating the
examples. A real-world application could contain a significantly more demanding set
of rules, which are application specific. For example, a multi-target application might
impose a rule that each unrecognized target be serviced by at least one sensor at
every demand instant, or that every target must have a combined visibility greater
than some minimum at every instant.

2.2.3 Judge Agent

Upon initiation, the judge agent sends a command to each sensor agent requesting
the sensor agents’ second-ranked acceptable solutions, S j2. Along with these alter-
nate solutions, each sensor agent also sends the corresponding expected visibilities.
The judge agent uses a depth-first approach to search through all possible permuta-
tions of 1st and 2nd ranked solutions for combinations that would resolve the conflict
(an example combination of first and second ranked solutions of four sensor agents
is [S11 S21 S32 S41]). It is important to note that the Iterative Deepening Depth-First
Search (IDDFS) [27] used in our work does not guarantee optimal computation time,
nor an optimal visibility solution. However, it does offer excellent performance in
terms of the trade-off between processing time and completeness of the search. The
IDDFS is commonly used as a search method for this problem type due to the large
potential search space and unknown search depth, which must be searched within a
given time-limit.

During this search, the judge agent selects the combination with the highest
visibility and informs the sensor agents of its decision. If no acceptable combination
is found, the judge agent increases the depth of the search space by requesting the
sensors agents’ third-ranked solutions, as in Fig. 1. This process is repeated until an
acceptable combination is found or the allowable search time has elapsed. In the
event that no acceptable combination is found within the allowable search time, the
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Fig. 1 Flowchart for judge
agent’s search for an
acceptable solution

START
r=1

Request Sj(r+1)
for j=1: n*

Acceptable 
solutions 
found?

Send new combinations 
to  

Referee Agent  

No

Select combination 
with highest visibility

Yes

FINISH

1st-ranked solutions (initial sensor agents’ intentions) are used. This ensures that
the system is not in a virtual deadlock if no solution exists that would satisfy the
external rules.

If one considers all agents in a system to be peers, then, virtual deadlock is
possible. Specifically, each agent may independently propose a first-ranked solution
that is optimal for that agent, but, one is that sub-optimal in terms of the overall
system performance. Since all agents are peers, no clear conflict resolution would be
readily available and group consensus would have to be used to resolve it. This would
entail extensive communications between the agents, unless a-priori set rules are
used for resolution. This case, however, often results in a very poor resolution. This
problem structure is very common (for example, computer-bus management) and the
solution is almost invariably a master-slave or hub architecture, hence, the use of the
judge agent in our work. The transmission of the ranked solutions, generally, incurs
significantly less overhead than a completely distributed resolution, and a centralized
set of rules improves the quality parameters of the system (maintainability, proper
encapsulation, etc).

2.3 Positioning Strategy

In a single-target, multi-object environment the positioning strategy is not only based
on the trajectory of the OoI (i.e., the target) but also on that of other objects not of
interest. The first step in determining the best achievable pose is to determine the
occluded regions in the workspace. In order to accomplish this, the pose of each
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Fig. 2 An example of
occluded regions of a sensor’s
workspace

Occluded

regions

Obstacle

Feasible 
region 

Obstacle

Target

Camera

object (OoI or obstacle) is predicted for the demand instant. Next, each object is
modeled as a single geometric primitive (e.g., a sphere or cylinder), rather than as a
collection of 3D polyhedra, in order to decrease computational complexity. Occluded
regions of a sensor’s workspace are determined by modeling the OoI as a light source
and calculating the geometric shadow volumes cast by the obstacles, Fig. 2. The
algorithm, subsequently, determines the region of the workspace that the sensor can
travel to before the target reaches the demand instant, referred to herein as feasible
region. This region is defined by the sensors’ dynamic motion capabilities such as
maximum velocity, vmax, acceleration, a, as well as time to next demand instant, dt.
For a sensor with one degree-of-freedom of translational mobility (along the x axis)
the feasibility region, xfeasible, is defined as,

x1 ≤ xfeasible ≤ xr. (7)

In Eq. 6, xr is the right limit defined by

xr = vo (dta1) + 1

2
a (dta1)

2 + vmax (dtc1) + vo (dts1) + 1

2
a (dts1)

2 , (8)

where vo is the current sensor velocity, dta1, dts1, and dtc1 are the times the sensor
travels while accelerating, decelerating, and with a constant velocity, respectively, in
order to get to the right travel limit, each defined by

dta1 =

⎧
⎪⎨

⎪⎩

vmax − vo

a
i f

(
2vmax − vo

a

)

< dt

1

2

(
dt − vo

a

)
else

, (9)
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dts1 =

⎧
⎪⎨

⎪⎩

vmax

a
if

(
2vmax − vo

a

)

< dt

1

2

(
dt + vo

a

)
else

, and (10)

dtc1 = dt − (dta1 + dts1) , (11)

The x1 in Eq. 6, is the left limit defined by

xl = vo (dta2) − 1

2
a (dta2)

2 − vmax (dtc2) + vo (dts2) − 1

2
a (dts2)

2 , (12)

where dta2, dts2, and dtc2 are the times the sensor travels while accelerating,
decelerating, and with a constant velocity, respectively, in order to get to the left
travel limit, each defined by

dta2 =

⎧
⎪⎨

⎪⎩

vmax + vo

a
if

(
2vmax + vo

a

)

< dt

1

2

(
dt + vo

a

)
else

, (13)

dts2 =

⎧
⎪⎨

⎪⎩

vmax

a
if

(
2vmax + vo

a

)

< dt

1

2

(
dt − vo

a

)
else

, and (14)

dtc2 = dt − (dta2 + dts2) . (15)

It should be noted that for sake of simplicity, the limits of the workspace have not
been included in the equations above.

Lastly, the algorithm determines a sensor pose that would yield maximum visi-
bility, which is both feasible and un-occluded (i.e., acceptable regions). This is done
by discretizing the acceptable region into a pre-specified number of positions. The
best pose is selected by evaluating the visibility metric at each discrete position.
The number of discrete positions is a trade-off between resolution of the result and
processing time - the exact choice can be determined through controlled experiments.
In general, the number of discrete poses considered can be increased (thus increasing
resolution of the result) until just before the controller cannot evaluate all poses (with
some margin for variation in processing time). The coordination and positioning of
each sensor is repeated continuously as new information, regarding the environment,
becomes available. This ensures that new and more accurate target-pose predictions
are utilized. Furthermore, as time approaches the demand instant (i.e., dt→0), the
size of the acceptable region diminishes and, therefore, it would be more densely
discretized resulting in more accurate sensor-pose determination.
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Table 1 Summary of parameters for three systems

Static system Slow dynamic Fast dynamic

Translational velocity 0 mm/s 2.5 mm/s 15 mm/s
Translational acceleration 0 mm/s2 0 mm/s2 30 mm/s2

Rotational velocity 0 rad/s 0.1 rad/s 0.3 rad/s
Target velocity 5 mm/s 5 mm/s 5 mm/s
Obstacle velocity 7 mm/s 7 mm/s 7 mm/s

3 A Simulated Example

In order to demonstrate the proposed dispatching algorithm, a simulated example is
briefly discussed in this section. The performance of the surveillance task is measured
using three systems: static, slow dynamic, and fast dynamic. Parameters for these
systems are summarized in Table 1. Each system has four cameras. The target was
modeled as a 25 mm circle, and the obstacles as 60 mm circles. The OoI trajectories
and the initial positions for each are shown in Fig. 3 (not to scale). The algorithm
proposed in Section 2 was implemented, with individual agents represented as
distinct software programs on a single physical system. Communication was thus
simplified, using direct communication through message passing and temporary files.

In our simulations, six demand instants were considered. At each demand instant,
the visibility attainable by each camera is calculated based on the camera model
given in Appendix A. The visibilities of each camera for the static, slow, and fast
systems are shown in Figs. 4, 5, 6, respectively, and the fused visibilities (the sum
of the visibility metric for each sensor in the system) in Fig. 7. One can see that
for all except Instant 6 (which shows a slight decrease in the slow system only), the
fused visibility of the sensing system (fast or slow) is higher than traditional static
placement. Similarly, the fast system (for all instants) shows the highest fused metric
values of any of the three trials, as expected. As established in the literature review,

Fig. 3 Left Initial sensor poses
and OoI trajectories. Right
OoI/Obstacle poses at each
demand instant

C4
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C1 C2
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C1 C2

1 2 3 4 5 6
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Fig. 4 Observed sensor
visibilities for static system, in
the presence of dynamic
obstacles
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increasing the visibility of the target directly leads to improved vision performance,
and thus a tangible benefit.

4 An Experimental Example

4.1 Experimental Set-Up

An experimental setup was also devised to evaluate the performance of the proposed
sensor-reconfiguration algorithm in a situation close to a real-world application. All
results have been gathered from a real-world, physical setup using an implementation
of the proposed algorithm.

Fig. 5 Observed sensor
visibilities for slow system, in
the presence of dynamic
obstacles
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Fig. 6 Observed sensor
visibilities for fast system, in
the presence of dynamic
obstacles
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Hardware This system uses four mobile cameras and a single target, represented by
a circular marker which maneuvers through the workspace on a planar trajectory,
Fig. 8. Due to system limitations, only stationary obstacles could be considered
during the experiments. A stationary, overhead camera (operating at 30 fps) is
utilized to obtain general estimates of the target motion and obstacle locations. All
cameras have one-DOF rotational capability (pan), while two of the cameras can also
translate linearly (see Table 2 for component list).

Software The surveillance system’s software consists of a collection of real and
virtual agents; some of which were already described in Section 2 (i.e., Sensor Agents,
Referee Agent, and Judge Agent). Others were added during the experiments in order
to provide supporting functions (i.e., Tracking and Prediction Agent and Sensor-

Fig. 7 Fused visibility of all
three systems in the presence
of dynamic obstacles
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Fig. 8 System layout (see
Table 2 below for hardware
details)
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Fusion Agent), and are described below, Fig. 9. A total of three physical systems were
used, with communication provided by Ethernet-based client/server architecture.
Uniform demand instant spacing was used, with a virtual period of 1/2 s – however,
the algorithm has been tested in simulation to operate at speeds higher than the
30-Hz upper limit imposed by the target-tracking system.

4.1.1 Common Agents

Sensor Agents The sensor agent receives current and future OoI pose estimations
from the tracking agent. It uses the information to choose the demand instants that
the associated camera will service and to determine its optimum pose during data
acquisition. A sensor agent’s desired pose (if approved by the judge/referee agents) is
sent to the associated motion controller in order to maneuver the sensor via its linear
and rotary stages. Each sensor agent captures and processes images independently.
The pose of the OoI is estimated using an analytical solution developed earlier in our

Table 2 Hardware specifications

Part no. Hardware Characteristic

1 Target Matte black aluminum plate marked with white
circular marker (diameter = 25 mm)

2 x − y table Range: 500 mm (x)/200 mm (y)

Positional accuracy: 48 μm (x)/24 μm (y)

Maximum velocity: 0.3 m/s
3 Two linear stages Range: 300 mm

Positional accuracy: 30 μm
Maximum velocity: 0.3 m/s

4 Four rotary stages Positional accuracy: 10 arc s
Maximum velocity: π /6 rad/s

5 Four dynamic CMOS cameras Resolution: 640 × 480 pixels
Lens focal length: 25 mm

6 One static CCD camera Resolution: 640 × 480 pixels
Lens focal length: 12 mm
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Tracking and
Prediction Agent
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Fig. 9 Software architecture of the active surveillance system

laboratory [18], Appendix B. The data from individual sensor agents are, then, fused
by a separate virtual agent in order to decrease the uncertainty in the final estimate
of target’s pose, Fig. 9.

Referee and Judge Agents As discussed in Section 2, these two virtual agents
monitor the intentions of the sensor agents and ensure that a desirable global
behavior is achieved.

4.1.2 Additional Agents

In addition to the basic agents of the proposed algorithm presented in Section 2,
agents specific to the experimental setup were also implemented:

Tracking and Prediction Agents The purpose of the prediction agent is to determine
estimates of the OoI’s future positions by tracking a circular marker mounted on top
of the OoI using a static overhead camera, Fig. 8. A center coordinate for each top
marker is first determined in image coordinates, which are subsequently transformed
to world coordinates, after calibration of the camera parameters using Tsai’s camera-
calibration technique [28]. The observed position of the marker is, then, fed into a
recursive Kalman Filter (KF) [29, 30] for OoI-motion prediction. Namely, the agent
uses the OoI’s state model, maintained by the KF, to predict its future poses at the
predefined demand instants.
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Data-Fusion Agent Individual estimates of the OoI’s poses are first transformed
from their camera coordinate frames into a common world coordinate frame using
the known camera poses. Since the center of the camera frame and its rotation
axis may not coincide, there may exist an offset that must be accounted for when
transforming the target position from the camera frame to the common world
coordinate frame. This offset is determined through a moving camera-calibration
method outlined in Appendix C. The aligned estimates are, then, fused by the data-
fusion agent in order to determine a single estimate of the OoI’s pose in world
coordinates. The specific fusion algorithm, Optimal Region [31], was chosen for
several reasons: (1) it requires a minimum amount of a priori knowledge about
the target’s trajectory, providing robustness to unexpected trajectory variations; (2)
uncertainties in all cameras are estimated and considered to allow optimal fusion; (3)
in the event of sensor malfunction, invalid data may be identified and discarded,
allowing some degree of fault tolerance; and, (4) it is computationally efficient,
enabling an on-line implementation.

A model developed in [32], which represents each sensor reading as a range
containing the correct value of the variable, forms the basis of the Optimal-Region
fusion algorithm. In order to distinguish between the model and the physical sensor,
two terms were defined in [32]: concrete sensor and abstract sensor. A concrete sensor
is the physical sensor with a single value reading, χ . An abstract sensor has a range
of values, ρ, which includes the correct value of the physical variable being measured
by the sensor. This is defined as,

ρ ∈ �, χ − δ < ρ < χ + δ, (16)

where δ represents the accuracy of the sensor, calculated through a priori knowledge
of the sensor’s uncertainty. The Optimal-Region fusion algorithm requires an ab-
stract sensor reading from each of the physical sensors (i.e., given n sensor readings,
the algorithm will acquire n ranges, ρ1 . . . ρn). If a no-fault system is assumed (i.e.,

Fig. 10 Initial camera poses
and OoI trajectory

1 2 3
4
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all abstract sensors return a range that includes the correct value of the physical
variable), then the range of values common to all abstract sensors contains the correct
value of the physical variable. This common range, ρc, is referred to as the optimal
region:

ρc = ρ1 ∩ ρ2 ∩ . . . ∩ ρn. (17)

In real systems, however, faults may occur and, therefore, one or more sensors
may not return a range that includes the correct value of the physical variable. The
Optimal-Region algorithm will still return a range that includes the correct value if

nf < n/2 (18)

where nf is the total number of faulty sensors and n is the total number of sensors
used ([32] provides proof and further details). In order to accomplish this, the
algorithm finds regions where (n−nf ) of the n abstract sensors intersect, referred
to as probable regions. The algorithm recursively uses range trees to return (as the
optimal region) the smallest region that contains all probable regions. The final fused
estimate, χ fused, is the weighted average of the center of each probable region, q j,

χfused =

∑

j
q js j

∑

j
s j

, (19)

where s j is the number of sensors intersecting in the j th probable region.

4.2 Experimental Procedure and Results

A number of experiments were conducted in our laboratory to evaluate the perfor-
mance of the proposed surveillance system, using the active vision set-up discussed
above. The experiments verified that the performance of a surveillance system can be
tangibly improved with the use of an effective dispatching strategy, under changing

Fig. 11 Observed visibilities,
slow system
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Fig. 12 Observed visibilities,
fast system
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OoI trajectories and sensor dynamics. This is primarily due to (1) increased robust-
ness of the system (i.e., its ability to cope with a priori unknown target trajectories
and presence of obstacles), (2) decreased uncertainty associated with estimating
the target’s pose through sensor fusion, and (3) increased reliability through fault
tolerance.

Procedure For this experiment, the performance of the same fast and slow dynamic
systems are compared. The system parameters are those outlined above and the
target followed the trajectory shown in Fig. 10.

System evaluation was carried out using the visibility metric discussed in
Section 2.1. Target visibility for a sensor is calculated using the expected variance
in the measurements. This is a function of the Euclidean distance to the target
and the angle of the camera’s local axis to the OoI’s surface normal. Evaluation is
performed by the Post-Process System Evaluation agent,which finds exact errors in
the real-time estimation of target pose. The first of these errors is the absolute error

Fig. 13 Fused visibilities of
both systems
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Fig. 14 Absolute errors in
OoI position estimate
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in position estimation, eposition, defined as the Euclidean distance between the true
target position, op = (xt, yt, zt), and the system’s estimate of the target’s position,
χ fused = (xe, ye, ze):

eposition = ∥
∥op − χfused

∥
∥ . (20)

Similarly, the absolute error in surface normal estimation, eorientation, is the angle
between the true OoI orientation, on, and the estimated surface normal, onfused :

eorientation = cos−1
(
on.onfused

)
. (21)

Results The pose of the moving target was estimated at six demand instants. The
visibilities of each sensor over the demand instants are given in Figs. 11 and 12.
Fused visibilities for both systems are shown in Fig. 13. One can note that the
fused target visibilities of the fast system are tangibly higher than those of the slow
system. Again, by increasing the average visibility metric, one can infer that the
performance of the system has increased. The corresponding absolute position errors
are shown in Fig. 14 and the absolute errors in surface-normal estimations are given
in Fig. 15. Despite the presence of random noise in both systems, the data confirms

Fig. 15 Absolute errors in
OoI surface-normal estimate
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the improvement of system performance through the use of the fast system – it has a
considerably lower overall absolute error. As such, one can conclude that increased
mobility of the sensors allows our proposed methodology to further improve average
visibility of the target.

5 Conclusions

A novel, generalized methodology is presented in this paper for the coordinated
selection and positioning of groups of active sensors for the autonomous surveillance
of a single target in a multi-object dynamic environment. The experiments and
simulations presented have shown that tangible improvements in performance over
the static case can be obtained through the use of multiple active sensors controlled
by the proposed dispatching algorithm, and that increased sensor motion capabilities
can improve performance further. While the overall reduction in uncertainty is
significant, cases still exist where the limited motion capabilities of the system
preclude the best solution. Future work will focus on addressing the limits imposed
by the real-world motion capabilities of the sensors, and on extending the framework
to multi-target environments.
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Appendix A: Sensor Modeling

Sensor modeling is an important part of optimal dispatching, where the objective is
to estimate a sensor’s performance, given a set of environmental conditions. For the
cameras used in our experiments, there are six variance measurements that define the
visibility metric. Three are for the target position (x, y, z) and three for orientation
(nx, ny, nz). Through variation analysis it was determined that only two controlled
parameters significantly affect the measurement variances: the Euclidean camera-to-
target distance, d, and the camera’s bearing, θ , as in Fig. 16.

Two-factorial experiments were performed to determine the relationship between
each measurement variance and the two controlled parameters, d and θ . As an
example, the results for two variances (estimation along the y-axis and one surface

Fig. 16 Camera’s distance, d,
and bearing, θ
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θ
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y

normal) are shown in Fig. 17. One can note that the significant changes in target-
localization performance. The shape of the elliptical projection of the circular marker
(i.e., the target) is better viewed at an angle between 20–40◦ from the surface normal
and reduced noise-to-signal ratios at close distances reduce variance. It should be also
noted that these are not the only factors that contribute to the measurement vari-
ance. However, since only the camera’s pose is dynamically adjusted (i.e., extrinsic
parameters), these are the only controlled parameters that affect the measurement
variance here. Other parameters, such as illumination, also affect the measurement
variance but are not included in the visibility measure.

Appendix B: 3D Location Estimation

The process of 3D-location estimation [20] of a circular feature, using the estimated
general parameters of the ellipse, is as follows:

1. Estimation of the coefficients of the general equation of the cone:

ax2 + b y2 + cz2 + 2 fyz + 2gzx + 2hxy + 2ux + 2vy + 3wz + d = 0. (22)

2. Reduction of the equation of the cone to:

λ1 X2 + λ2Y2 + λ3 Z 2 = 0, (23)

where the XYZ-frame is the canonical frame of the conicoids.
3. Estimation of the coefficients of the equation of the circular-feature plane (plane

intersecting the cone that would result in a perfect circle):

lX + mY + nZ = P (24)
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using the following transformation:
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⎦ (25)

The transformation is defined such that Z ′ is normal to the plane axis defined
by Eq. 28. The solution to determining l, m, and n depends on which of three
possible cases occurs:

(a) λ1 < λ2,

(b) λ1 > λ2, or
(c) λ1 = λ2,

4. Estimation of the direction cosines of the surface normal with respect to the
camera frame: l, m, n.

5. Knowing the radius of the circular feature (r) and its center (X ′
o Y ′

o Z ′
o) in camera

coordinates, (X ′ Y ′ Z ′) can be found by solving the following system of equations
(Fig. 18):

X ′
0 = − B

A
Z ′

0

Y ′
0 = C

A
Z ′

0

Z ′
0 = ± Ar√

B2 + C2 − AD
, (26)

where

A ≡ (
λ1l2

1 + λ2l2
2 + λ3l2

3

)

B ≡ (λ1l1n1 + λ2l2n2 + λ3l3n3)

C ≡ (λ1m1n1 + λ2m2n2 + λ3m3n3)

D ≡ (
λ1n2

1 + λ2n2
2 + λ3n2

3

)
. (27)

Appendix C: Moving-Camera Calibration

In order to determine the relationship between camera and world coordinates,
the extrinsic camera parameters must be determined. These were found in our
work through Tsai’s calibration method [28]. However, in the case of active-vision,
the cameras’ extrinsic parameters are constantly changing due to rotations and
translations. In order to account for these changes, the algorithm first applies a
transformation matrix to return the rotated camera frame to the frame identical to
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Fig. 18 A schematic representation of the ellipse created in the image plane from the circular feature

its original reference frame before rotation. It, then, applies a second transformation
matrix to account for any translational movement of the camera since the initial
calibration. At this stage, the original calibration matrix can be applied to transform
the camera frame to the world frame.

In order to counter the effects of rotation, one must know the rotation axis, the
rotation angle, and the center of rotation. We assume that the rotation axis the z-axis,
due to the optical tables and high-precision rotary tables used in our experimental
set-up. A secondary calibration method is used to determine the center of rotation
in camera coordinates. First, the target is placed in the camera’s field of view and

Fig. 19 Camera
coordinate-frame
transformation due to camera
rotation

Center of rotation
(ax, ay)
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readings are taken on its position in camera coordinates. Multiple readings are taken
and the results fused to minimize the effect of random noise. Without changing the
target position, the camera is then rotated as much as possible while still keeping the
target in its field of view. A second set of readings is taken on the target’s position in
the new camera coordinates.

We solve the following equations for the required offsets:

[
cos (θ) − sin (θ)

sin (θ) sin (θ)

] [
Px1 − ax

Py1 − ay

]

+
[

ax

ay

]

=
[

Px2

Py2

]

(28)

where (Px1, Py1) and (Px2, Py2) are the target locations in camera coordinates before
and after rotation, respectively, θ is the rotation angle, and (ax, ay) is the center of
rotation in camera coordinates, Fig. 19. The inverse of Eq. 28 transforms any camera-
frame rotation to the original camera frame location.

References

1. Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer vision. IEEE
Trans. Robot. Autom. 11(1), 86–104 (1995)

2. Sakane, S., Sato, T., Kakikura, M.: Model-based planning of visual sensors using a hand-eye
action simulator: HEAVEN. In: Espiau, B. (ed.) Proc. Conf. on Advanced Robotics, pp. 163–
174. Versailles, France (1987)

3. Tarbox, G.H., Gottschlich, S.N.: Planning for complete sensor coverage in inspection. Comput.
Vis. Image Underst. 61(1), 84–111 (1995)

4. Cowan, C.K., Kovesik, P.D.: Automated sensor placement from vision task requirements. IEEE
Trans. Pattern Anal. Mach. Intell. 10(3), 407–416 (1988)

5. Anderson, D.P.: Efficient algorithms for automatic viewer orientation. Trans. Comp. Graphics.
9(4), 407–413 (1985)

6. Zhang, H.: Two-dimensional optimal sensor placement. IEEE Trans. Syst. Man. Cybern. 25(5),
781–792 (1995)

7. Trucco, E., Umasuthan, M., Wallace, A.M., Roberto, V.: Model-based planning of optimal sensor
placements for inspection. IEEE Trans. Robot. Autom. 13(2), 182–194 (1997)

8. Sheng, W., Xi, N., Song, M., Chen, Y.: CAD-guided sensor planning for dimensional inspection
in automotive manufacturing. IEEE-ASME Trans. Mechatron. 8(3), 372–380 (2003)

9. Niepold, R., Sakane, S., Shirai, Y.: Vision sensor set-up planning for a hand-eye system using
environmental models. In: Proceedings of the Society of Instrument and Control Engineers of
Japan, vol. 7(1), pp. 1037–1040. Hiroshima, Japan, July (1987)

10. Matsuyama, T., Wada, T., Tokai, S.: Active image capturing and dynamic scene visualization by
cooperative distributed vision. In: Nishio, S., Kishino, F. (eds.) Advanced Multimedia Content
Processing, vol. 11(4), pp. 252–288. Springer, Berlin (1999)

11. Horling, B., Vincent, R., Shen, J., Becker, R., Rawlins, K., Lesser, V.: SPT distributed sensor
network for real-time tracking. Technical Report 00-49. University of Massachusetts, Amherst,
MA (2000)

12. Spletzer, J.R., Taylor, C.J.: Dynamic sensor planning and control for optimally tracking targets.
Int. J. Rob. Res. 22(1), 7–20 (2003)

13. Kamel, M., Hodge, L.: A coordination mechanism for model-based multi-sensor planning.
In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 1143–1149.
Vancouver, Canada (2002)

14. Zhou, H., Sakane, S.: Sensor planning for mobile robot localization using Bayesian network
inference. J. Adv. Rob. 16(8), 751–771 (2002)

15. Tsai, R.Y., Tarabanis, K.: Model-based planning of sensor placements and optical settings. In:
Sensor Fusion II: Human and Mach. Strategies, pp. 936–944. Philadelphia, PA (1989)

16. Tsai, R.Y., Tarabanis, K.: Occlusion-free sensor placement planning. In: Freeman, H. (ed.)
Machine Vision for Three Dimensional Scenes, pp. 349–356. Academic, Orlando, FL (1990)



J Intell Robot Syst (2009) 54:567–593 593

17. Goodridge, S.G., Kay, M.G.: Multimedia sensor fusion for intelligent camera control. In: Proc.
of IEEE/SICE/RSJ Multi-sensor Fusion and Integration for Intelligent Systems, pp. 934–940.
Washington, D.C. (1996)

18. Merchand, E., Hager, G.D.: Dynamic sensor planning in visual servoing. In: Proc. of the IEEE
Int. Conf. on Robotics and Automation, pp. 1988–1993. Leuven, Belgium (1998)

19. Farag, A.A., Abdel-Hakim, A.E.: Image content-based active sensor planning for a mobile
trinocular active vision system. In: International Conference on Image Processing (ICP04), pp.
2913–2916, Oct (2004)

20. Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision. IEEE Trans.
Syst. Man. Cybern. B 34(1), 393–408 (2004)

21. Isler, V., Bajcsy, R.: The sensor selection problem for bounded uncertainty sensing models. In:
Proc. of the 4th Intl. Symposium on Information Processing in Sensor Networks. Information
Processing in Sensor Networks, vol. 20, pp. 151–158. IEEE Press, Piscataway, NJ (2005)

22. Tang, Z., Ozguner, U.: Motion planning for multi-target surveillance with mobile sensor agents.
IEEE Trans. Robot. 21(5), 898–908 (2005)

23. Rekleitis, I., Meger, D., Dudek, G.: Simultaneous planning, localization, and mapping in a
camera sensor network. Robot. Auton. Syst. 54(11), 921–932 (2006)

24. Ukita, N., Matsuyama, T.: Real-time cooperative multi-target tracking by communicating active
vision agents. In: Proc. of the Int. Conf. on Information Fusion, pp. 439–446. Queensland,
Australia (2003)

25. Cook, D.J., Gmytrasiewicz, P., Holder, L.B.: Decision-theoretic cooperative sensor planning.
IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1013–1023, Oct (1996)

26. Cook, D.: Reconfiguration of multi-agent planning systems. In: Proc. Artificial Intelligence
Planning Systems, pp. 225–230 (1994)

27. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ,
Prentice Hall (2003)

28. Tsai, R.: A versatile camera calibration technique for high accuracy 3D machine vision metrology
using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

29. Bakhtari, A., Eskandari, M., Naish, M.D., Benhabib, B.: A multi-sensor surveillance system for
active-vision based object localization. IEEE, Conf. System, Man and Cybernetics, pp. 1013–
1018. Washington, DC, October (2003)

30. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic
Eng. 82(4), 35–45 (1961)

31. Brooks, R., Iyengar, S.S.: Multi-sensor fusion: Fundamentals and applications with software.
Prentice Hall, Englewood Cliffs, NJ (1998)

32. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Trans. Comput. Syst. 8(4),
284–304 (1990)


	Active-Vision for the Autonomous Surveillance of Dynamic, Multi-Object Environments
	Abstract
	Introduction
	Sensing-System Reconfiguration in Static Environments
	Sensing-System Reconfiguration in Dynamic Environments
	Single-Object Environments
	Single-Target, Multi-Object Environments
	Multi-Target, Multi-Object Environments

	Problem Definition
	Agent-Based Sensing-System Reconfiguration


	Sensing-System Reconfiguration Strategy
	Quality of the Sensing Data
	Coordination Strategy
	Sensor Agents
	Referee Agent
	Judge Agent

	Positioning Strategy

	A Simulated Example
	An Experimental Example
	Experimental Set-Up
	Common Agents
	Additional Agents

	Experimental Procedure and Results

	Conclusions
	Appendix A: Sensor Modeling
	Appendix B: 3D Location Estimation
	Appendix C: Moving-Camera Calibration
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


