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Abstract—A novel active prediction, planning, and execution
(APPE) system is presented herein for the robotic interception of
moving objects. The primary feature of the proposed APPE sys-
tem is the ability to intercept the object at an optimal rendezvous
point, anywhere along its predicted trajectory, within the robot’s
workspace. For the interception of objects in industrial settings,
the motion of which allows long-term predictability, this feature
is a significant improvement over earlier APPE systems. These
could only select a rendezvous point among a few nonoptimal
interception points considered. An APPE system’s objective is
simply to move the robot to the earliest pregrasping location.
A fine-motion tracking algorithm can take over the motion
control at that point, utilizing proximity sensors mounted on
the robot’s end-effector. This approach eliminates the necessity
of tracking the motion of the object, as required by conven-
tional tracking-based techniques, where the distance between the
robot’s end-effector and the object is reduced continuously. In
this paper, the proposed APPE system is first briefly introduced,
and its individual modules are thereafter discussed in detail.
Simulation and experimental results are presented in support of
the developed optimal-interception strategy.

Index Terms—Active prediction, planning, and execution sys-
tem, robotic interception.

I. INTRODUCTION

A KEY FEATURE OF intelligent robotic systems is the
ability to perform autonomously a multitude of tasks

without completea priori information, while adapting to
continuous changes in the working environment. An important
problem in this field is the robotic interception of moving
objects. A common approach to the object-interception prob-
lem is the utilization of a prediction, planning, and execution
(PPE) strategy [1], [2]. In a PPE strategy, the motion of
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an object through a robot’s workspace is predicted. Robot
motion to intercept the object is then planned and executed.
This approach can be used in an “active” mode (APPE), e.g.,
[3], where the three stages may be repeated as necessary to
ensure the successful completion of the interception task. In
this context, a novel APPE system developed and implemented
in our laboratory will be described in this paper.

APPE-based approaches constitute an alternative to
tracking-based techniques, which essentially minimize the
difference between the state of the robot’s end-effector
and the state of the moving object, [4], [5]. The principal
advantage of APPE systems over tracking-based systems is
their ability to find an optimal solution to the interception-point
planning problem. However, most APPE-based techniques
reported in the literature target nonindustrial settings. They
normally sacrifice time optimality in favor of a guarantee of
interception, either for fast-moving objects or for objects of
which the Cartesian path topology and/or velocity profiles
vary significantly over short periods of time. Therefore,
they choose a rendezvous point among a limited number of
potential interception points considered, where these usually
correspond to the intersection of the (most current) estimated
target trajectory with fixed planes (or lines in the planar cases).

In this paper, the proposed novel technique allows the
interception of the moving object at the earliest possible
time, given the constraints of the robot’s motion capabilities.
Namely, the interception is not restricted to a choice among
a few potential points, as with other APPE systems, but
targeted toward the selection of the best rendezvous point
anywhere on the target’s predicted trajectory. Prior to the
description of our research results, some APPE systems are
briefly reviewed below.

Hove and Slotine [6] used a hybrid PPE-tracking system for
robotic ball catching. The PPE approach is used to plan the
initial motion of the robot. A point on the ball’s path (parabolic
in nature) closest to the initial position of the end-effector is
chosen as the first potential rendezvous point. The robot is
immediately sent to this point. A tracking strategy takes over
the control of the robot once the ball passes the first potential
rendezvous point. Thus, in this paper, the PPE technique is
utilized to improve upon the principal tracking-based method.

Andersson [3] used an APPE approach in the development
of a robotic ping-pong player. Based on the predicted motion
of the ball, three possible interception points are identified
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within the workspace of the robot. These correspond to the
intersection of the ball’s trajectory with three fixed “hit planes”
selecteda priori perpendicular to the ball’s direction of travel.
An expert system selects the most suitable rendezvous point.
As new information about the ball’s trajectory becomes avail-
able, the planner can modify the rendezvous point within the
selected plane.

Butazzo et al. [7] developed an APPE system for the
interception of a planar object. The motion of the object is
much less predictable than in the other cases described above.
The interception is always performed on the object plane along
a virtual catching line. This constraint defines the rendezvous
point as the intersection of the object’s trajectory and the
catching line. The starting position of the robot end-effector
is at a fixed height above the catching line. The motion of the
robot in [7] (for the vertical motion of the end-effector only),
as well as in [3], is planned using quintic polynomials, where
robot motion time is defined by the arrival time of the target
at the rendezvous point.

Lastly, Mikesell et al. [8] developed an APPE system for
the robotic interception of an object moving in a plane and
bouncing off the walls of a square enclosure. As in [7], a
rendezvous point is determined by first selecting one of the two
fixed intercept lines which the object’s trajectory intersects.
Once an intercept line is chosen, the actual rendezvous point
on it is chosen based on continuously updated object-trajectory
prediction data.

II. SYSTEM OVERVIEW AND PROBLEM DEFINITION

APPE approaches to robotic interception of moving objects
use botha priori and on-line information to create interception
strategies. The cornerstone of the planning process is the
selection, evaluation, and updating of a rendezvous point. This,
in turn, depends on the ability of the planning module to plan
robot trajectories in an on-line mode.

The APPE approach assumes that the object trajectory does
not vary significantly as a function of time and, thus, it is
predictable. This principal feature of “long-term” predictability
of the object motion can be exploited for finding the earliest
interception point, rather than solely minimizing the difference
between the states of the robot end-effector and the object.

The general APPE system developed in our laboratory is
depicted in Fig. 1. The role of the “prediction module” is
to provide the planning and replanning modules with on-line
predictions of the target’s trajectory. The role of the “planning
module” is to determine the firstoptimal rendezvous point on
the initially predicted target trajectory and initiate the robot’s
end-effector motion to meet the object at this point. The role
of the “replanning module” is to locally modify the location
of the rendezvous point and generate new robot trajectories
as needed to ensure interception. This module is provided
with on-line information about the robot’s current state and
the latest predicted target trajectory. The “execution module”
implements the robot trajectories received from the planning
and replanning modules.

The primary objective of this paper is the development
of a motion-planning and execution strategy for a robot to

Fig. 1. APPE system implementation.

rendezvous with a moving target, where the target is defined
as the “pregrasping” location for the object.1 It is desired that
the rendezvous point be the “earliest” possible interception
point on the target trajectory. This optimality, however, can
only be achieved by evaluating all potential rendezvous points
on the target’s trajectory, and selecting the one to which the
robot would take the shortest time to travel.

According to the APPE system proposed in Fig. 1, the pri-
mary optimization problem at hand is, therefore, determining
the “initial” optimal rendezvous point (planning module). It
is anticipated that a large portion of the computational time
required to intercept the object would be spent at this stage.
This optimization problem can be formulated as a two-level
procedure.

Outer loop: Evaluate potential rendezvous points on the
target’s predicted trajectory with respect to
robot-motion time and choose the earliest
interception point. (This substage is a one-
dimensional optimization problem.)

Inner loop: Determine the minimum robot-motion time
from the initial state of the robot to a
potential rendezvous point considered
by the outer loop. (As will be discussed later,
for this substage, we recommend the use of any
one of the on-line time-optimization techniques
reported in the literature.)

The subsequent replanning stage of the rendezvous point, in
response to new target-trajectory prediction data, assumes that
the optimality achieved above can be maintained if the target’s
trajectory does not change significantly (replanning module).
Although, at this stage, the interception time can be further

1Once the end-effector reaches the pregrasping rendezvous point, it is
expected that a fine-motion tracking strategy would be utilized to grasp the
object. Most likely, proximity sensors would be employed for active sensing.
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reduced, the primary concern is the successful interception
of the target. This second problem can be formulated as a
two-step procedure.

1) Consider a new rendezvous point on thenewly predicted
target’s trajectory and, if needed,

2) modify the robot’s original trajectory to guarantee inter-
ception.

One must note, however, that extensive optimization cannot
be carried out at this replanning stage (as was the case in
the planning of the initial rendezvous point), due to severe
computational time restrictions. Herein, this is acceptable,
since, in industrial settings, objects’ paths would not vary
significantly anyway (e.g., grasping an object from a moving
automatically guided vehicle).

In regard to the prediction of the target trajectory, the
first optimization problem stated above requires long-term
prediction, as is the case with all APPE systems, while the
replanning stage requires short-term prediction, as is the case
with all tracking-based systems and the replanning modules
of other APPE systems. Thus, in the next section, we first
present a novel long-term target-trajectory prediction algorithm
(prediction module). The rendezvous-point planning issues are
addressed in the subsequent section.

III. T ARGET-TRAJECTORY PREDICTION

The proposed prediction system is envisioned to have two
principal objectives within the framework of the APPE; it
provides the planning and replanning modules with predictions
of the target’s trajectory and estimates of the uncertainty
associated with these predictions. Providing the replanning
module with a measure of confidence is essential, so that it
can decide whether a replan is required.

A. Kalman Filter

The three most common prediction approaches reported
in the literature are the autoregressive models (ARM’s)
[9], – – filters [2], and Kalman filters (KF’s) [10].
Papanikolopouloset al. [11] investigated several prediction
approaches and found that stochastic approaches, such as the
KF, are very robust in the face of noise.

The central element of our prediction module is the KF
algorithm. The KF algorithm receives its information from a
computer-vision system that continuously tracks the object’s
position in world coordinates. The KF is a computationally
efficient algorithm which generates an optimal least-squares
estimate from a sequence of noisy observations [12]. For linear
systems, it produces a new optimal estimate from an additional
observation without having to reprocess past data. The KF can
also be used to obtain multiple-step-ahead predictions [13] by
propagating the KF extrapolation equation (i.e., one-step-ahead
predictor).

In our system, the function of the KF is to obtain optimal
estimates of the target’s present position, as well as predictions
of the target’s future trajectory.

The KF is a state-space formulation; thus, the model de-
scribing the target must also be expressed in state-space form.
For example, the two-dimensional system model for the KF

is defined as [14]

(1)

where is the state vector, which in our case, is the Newtonian
state of the object being intercepted, and is the state
transition matrix relating the object’s past state to its current.

The measurement model is given as

(2)

where is the noisy measurement obtained with the cam-
era, and is the measurement matrix relating the observed
measurement to the true state of the target.

In (1) and (2), and are zero-mean, mutually uncorre-
lated, white noise with and covariances (herein, assumed
constant).

Given the initial expected value of the state and its covari-
ance as and

(3)

The digital KF is given by the following five equations [14]:

1) initial state-estimate extrapolation (one-step-ahead pre-
dictor)

(4)

2) error-covariance extrapolation

(5)

3) Kalman gain matrix update

(6)

4) optimal state-estimate extrapolation

(7)

5) covariance update

(8)

In modeling a two-dimensional system, the noise in the
and directions are assumed to be independent and, thus,
the and states are decoupled. A constant-velocity target
motion model is used for each direction, In practice,
however, the velocity does undergo at least slight changes.
This can be modeled by a continuous-time white noise
[15]:

(9)

where

Herein, the use of a fading memory filter (FMF) [14] is also
proposed to place more emphasis on the newest data. With an
FMF, old data is discarded by increasing the covariance of the
measurement noise for past measurements:

(10)
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Fig. 2. Best overall constant-velocity KF for stop-and-go motion.

where is the regular noise covariance, is the new noise
covariance, and

(11)

In (11) above, is the measurement interval andis the
age-weighting time constant. It then follows that

(12)

A recursive KF can be constructed under these assumptions.
It is identical to the standard KF given by (4)–(8), except for
a modified error-covariance-extrapolation equation (i.e., the
plant’s covariance term is now multiplied by the factor)

(13)

A KF must be “tuned,” via the adjustment of all the variable
parameters, by analyzing the system’s performance (in the
form of the residual series). The parameters to be tuned are
problem specific but usually include the decorrelation time and
the standard deviation of the white noise driving the system
covariance.

Most KF tuning criteria simply compare the target’s ob-
served behavior to the estimates of the KF. A well-tuned KF is
one that tracks the target well. However, through simulations,
one would note that a KF well tuned for one-step-ahead
tracking will usually not provide good long-term predictions.
Thus, using a similar line of reasoning, a long-term predictive
KF must be selected by comparing the KF’s predictive and
tracking performance to the true behavior of the target.

B. Simulations

Besides the constant-velocity model described above,
constant-acceleration, constant-jerk, and first-order Gauss

Markov filters were also examined for various planar object
paths. Through simulations, improvements in long-term-
prediction performance were shown to be obtainable by
decreasing the FMF factor. However, by decreasing the
FMF factor, the KF places less emphasis on newer data.
This makes the filter less responsive to sudden changes in
the object’s path. Thus, in selecting a KF for the proposed
APPE, a compromise had to be achieved. A KF that provides
reasonable one-step-ahead tracking and good, stable long-term
predictions was selected.

In one exemplary “worst case scenario” simulation, ad-
dressed herein, the object accelerated uniformly at 50 mm/s
to a maximum velocity of 125 mm/s. After traveling at
this velocity for 0.3 s, it decelerated to rest, remained sta-
tionary for 2.7 s, and then accelerated to its maximum ve-
locity, at which it traveled until it left the camera’s field
of view (an unlikely motion in industrial environments).
Superimposed onto the object’s trajectory was Gaussian white
noise with a 3-mm standard deviation, approximately twice
the magnitude of the noise present in our current system.
The object’s trajectory was sampled at standard video rate,
15 Hz.

Fig. 2 shows the simulation results based on a constant-
velocity target motion model which has a 1.11-s time constant.
Plotted on each curve, besides the object’s path and the one-
step (i.e., 0.067 s) KF estimate of its current position, are
predictions of the object’s future position, 1.0 and 2.0 s into
the future.

IV. ROBOT-MOTION PLANNING

Both the optimal planning of the initial rendezvous-point
stage and the subsequent replanning of the modified points
stage will be addressed in this section.
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Fig. 3. Predicted target trajectory and planned time-optimal robot trajecto-
ries.

A. Search for the Initial Rendezvous Point

1) Problem Formulation:The determination of the opti-
mal (initial) rendezvous point involves a one-dimensional
search along the predicted target trajectory, defined herein as

for the earliest interception point. The predicted
target trajectory is parameterized by a global clock time
A rendezvous point is characterized by both the potential
rendezvous time and the correspondingrendezvous state

.2

Potential rendezvous points on can be eval-
uated using any on-line point-to-point (PTP) optimal robot-
trajectory planning technique (see Section V). Such a calcu-
lation would provide the minimum robot travel time to

(Fig. 3), as well as the robot trajectory to
that state.3

2) Proposed Solution:Most solutions to the global time-
optimal PTP trajectory-planning problem (with two fixed
boundary points) reported in the literature are computationally
intensive and, thus, not suitable for on-line planning. In our
case, since only the initial boundary point is specified,
the solution of the time-optimal rendezvous problem further
requires the additional search of the target trajectory for an
end point consistent with the minimization process.
Thus, for on-line planning, a computationally inexpensive,
near-optimal solution is necessary.

Once a PTP-motion time-optimal trajectory-planning tech-
nique is selected, the problem that remains to be addressed
is finding the optimal rendezvous point on the predicted
target trajectory. The former issue is addressed in Section
V, while, herein, we assume that such a solution algorithm
is available for finding the minimum robot-travel time to
a specific potential rendezvous state considered, within our
one-dimensional optimization search.

A potential rendezvous point is characterized by the arrival
times of both the robot and the target at the corresponding
rendezvous state. To illustrate this evaluation, atravel-time di-
agramis constructed (Fig. 4). In this diagram, the global clock

2Each rendezvous-point is defined as a2n+ 1-dimensional vector (where
n is the number of degrees of freedom of the target’s mobility).

3Thus, the robot trajectory to each potential rendezvous state, including the
optimal rendezvous state, is found as a byproduct of the search for the optimal
rendezvous-point.

Fig. 4. Travel/arrival-time diagram.

time is plotted along the abscissa. Potential rendezvous times
are represented on the abscissa by etc. Robot travel
times and target arrival times to potential rendezvous
states are plotted on the ordinate.

The travel-time diagram shown in Fig. 4 is constructed as
follows.

1) Select a predicted state on the target trajectory
(Fig. 3) as a potential rendezvous

state. The associated rendezvous timeis marked on
the abscissa of the travel/arrival-time diagram (Fig. 4).

2) The target arrives at state at time
This is marked by the “ ” symbol on the travel/arrival-
time diagram.

3) The robot, on the other hand, takes timeto arrive
at as marked by the “” symbol on the
travel/arrival-time diagram. (It should be noted that only

indicates the minimum-time rendezvous point).
4) The actual target state at the time the robot ar-

rives at state is designated by
where (This assumes that

namely, the proposed rendezvous point is not
the minimum-time point).

To reiterate,clock times and , associated with different
target states, are plotted on the abscissa. On the other hand,
travel/ arrival times and associated with thetime that
the target and robot take to reach a particular state, are plotted
on the ordinate.

Since the target trajectory is parameterized bythe target
arrival-time function is simply a straight line
with slope 1. A function describing the robot travel times to
points on the target trajectory is defined herein as
The intersection of and designates the optimal
rendezvoustime namely, the earliest time that the robot
end-effector can reach the same location with the velocity as
the target. As expected, except for the intersection of and

at time a difference will exist between and
Using the above definitions, the time-optimal rendezvous-

point planning problem can be stated as follows.
“Find the earliest feasible rendezvous point

such that ”
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Although the use of a specific robot-trajectory planning
method would vary the value of the achievable optimal motion
time this could be simply seen as obtaining a different

curve, which would naturally intersect in Fig. 4
at a different location. Thus, the success of the interception
strategy proposed in this paper is independent of the specific
robot-trajectory planning technique selected.

As the principal justification for the formulation presented
in this paper, it must be noted that the robot travel time
cannot be analytically obtained, nor can it be exactly evaluated
via numerical methods in an on-line manner. Thus, herein, as
part of the general APPE strategy, a numerical approximation
of based only on the calculations of optimal robot motion
times to few potential rendezvous points is proposed. Since an
approximationof is used to find the intersection of
and the true value of will never be exactly determined.
In other words, the value of the approximated curve at
the intersection point will always be different than the true
(minimum) robot-travel time to the rendezvous point denoted
by Thus, in order to determine the “achievable” optimal
rendezvous point, an iterative search procedure has been
devised. In this algorithm, the robot-travel time function
is iteratively improved based on the new calculations of the
true robot-motion times to potential rendezvous states found
in earlier iterations. The central element of this algorithm
is an objective function, defined below, which is calculated
at every iteration to evaluate the potential rendezvous point
at hand.

a) The objective function: interception time:As stated
above, examination of Fig. 4 indicates that potential ren-
dezvous points for which would require the robot to
“chase” the target, since the robot cannot reach these points
prior to the target’s arrival. If the robot could catch up to the
target before it moves out of the robot’s workspace, it would
catch the target at an interception time greater thanPoints
for which , on the other hand, would require the robot
to wait for the target, with an interception time also greater
than Thus, the objective-function value of a potential
rendezvous point can be defined as
the corresponding estimated “real” interception time at
which the robot would intercept the target [16]

(14)

where is an average (a priori known) robot end-effector
speed, and is an average (on-line calculated) target speed.
One can note that the calculation of the estimated interception
time is simply a measure of the value of a particular planned
rendezvous point and does not necessarily reflect a completed
plan to intercept the target at this interception time. The actual
interception time may be different due to replanning, as will
be described in Section IV-B. For the set of rendezvous points

considered so far, the current best achievable interception
time is then defined as

(15)

b) The temporal convergence criterion:Given the above
formulation for the objective function, the solution to the
rendezvous-point problem is achieved by iteratively increasing
the accuracy of , in order to improve upon The
convergence criterion for the minimization of can be
determined by considering the cost of each minimization step.
The time cost of improvement, namely, the period of time
required to compute a new robot trajectory to the proposed
rendezvous point should not exceed the expected reduction
in interception time due to an additional iteration.

The decision-making procedure for the convergence of the
minimization is as follows.

1) Consider a new potential rendezvous time, deter-
mined as the intersection of (the current approximation
of) and

2) Consider (the target arrival time), as the minimum
possible interception time for (14).

3) Determine thepotentialimprovement in the interception
time with respect to the previous iteration

(16)

4) If the time that it takes to calculate the near-time-
optimal PTP robot motion to is
greater than namely,

(17)

then, the optimization algorithm has converged.

Otherwise, is reapproximated using the additional true
robot-motion time calculated for and
steps 1)–4) are repeated.

The above convergence criterion, (17), is “temporal” in
nature and is only concerned with the iterative improvement
estimation of

c) Coping with uncertainties:Uncertainties in the esti-
mation of the target’s trajectory complicate the search for
the intersection of and at every iteration. Thus, for
a certain approximation at hand, the problem introduced
by the uncertainty in the target position is the determination
as to whether further effort is required to improve the spatial
position of the end-effector with respect to the predicted target
location at the rendezvous time (namely, deciding when to
stop the search algorithm for the exact intersection of
and

Given an estimate of the variance of a predicted target
location (provided by the prediction mod-
ule), an uncertainty ellipse [17] and a corresponding tolerance
region can be constructed around the predicted point. The front
and rear limits of the tolerance region can be represented by
two limiting points on the travel-time diagram, namely,
and (Fig. 5). The set of all such limiting points forms the
tolerance-limit lines about the target arrival-time line.

The tolerance limits provide the positional conver-
gence constraint corresponding to a potential rendezvous time

represented herein as

(18)
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Fig. 5. Representation of the tolerance limits around a point on the predicted
target trajectory.

Equation (18) is used as a necessary condition for the conver-
gence of the rendezvous-point selection algorithm.

3) The Rendezvous-Point Planning Algorithm:The preced-
ing section provided a basis for the formulation of the one-
dimensional rendezvous-point planning optimization problem,
which is minimize the interception time subject to the posi-
tional convergence criterion:

where (19)

The comprehensive planning algorithm to solve (19) is as
follows.

1) Start the approximation of by selecting two extreme
states on the pre-
dicted target trajectory (for example, the entry and exit
intersections of the predicted object trajectory with the
workspace envelope of the robot). Set

2) Calculate the robot motion times and to the
two rendezvous states using a PTP near-time-optimal
trajectory planning algorithm, record the values of
and and set

3) Construct using
4) Set .
5) Estimate the intersection of and ,4 such that

6) Determine and, if check whether ;
if true, set as the optimal rendezvous time and
stop, otherwise, continue. (Note thatis defined only if

step 8.)
7) Calculate near-time-optimal motion to

with motion time
8) Determine set , and record corre-

sponding to
9) Go to step 3).

The above algorithm was proven to monotonically converge
to the optimal solution in [16].

4The travel-time line is shifted to the right an amounttcalc to accommodate
the time required for an estimated maximum number of planning iterations.
However, instead of fixing a bulk cost to planning, the time cost of planning
could be incorporated into each calculation of the robot travel time and
interception time. Such an adaptive approach is presented in [16].

Fig. 6. The schematic view of the robotic interception system.

B. Replanning

If the rendezvous-point planner described in Section IV-A
was provided with accurate information, then the robot could
intercept the target at the first planned optimal rendezvous
point. However, uncertainties in the model of the target motion
result in inaccurate predictions of the target trajectory. In this
context, the primary purpose of replanning is to locally modify
the initial optimal rendezvous point, so that interception is
guaranteed, and not to further improve the interception time.
A new strategy is required for this task, since the repeated
application of anoptimalrendezvous-point selection algorithm
for determining improved rendezvous points would not be
feasible due to computation-time constraints.

In the proposed strategy, replanning entails altering the
unexecuted portion of the robot trajectory by planning a
trajectory patch to a newly selected rendezvous point (Fig. 6).
Motion continuity is maintained at the patch starting point.
Replanning includes two successive examinations:

1) determining whether a new rendezvous point, chosen on
the newly predicted target trajectory, would potentially
improve upon the robot-motion plan currently under
execution;

2) determining whether the target can be intercepted at this
new rendezvous point and, if not, how a modified ren-
dezvous point can be chosen to guarantee interception.

a) Determining the potential for improvement:
Replanning must be motivated by a potential improvement

upon the currently aimed rendezvous point, considering the
newly predicted target trajectory The cur-
rently aimed rendezvous state must first
be compared to a new potential rendezvous state on the newly
predicted target trajectory [Fig. 7(a) and (b)].

The comparison procedure is as follows.

1) Find a state on the newly-predicted target trajectory
closest in Cartesian distance to Denote this
state as

2) Determine whether is within the uncertainty
ellipse surrounding the new rendezvous state

(20)
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(a)

(b)

Fig. 7. Spatial evaluation of the location of the currently aimed rendezvous
state.

If it is, then, the current robot motion under execution
would take the end-effector to a spatial location which
is sufficiently close to [Fig. 7(a)].
However, the algorithm must now proceed to step
3) to check whether the spatial location of the end-
effector lies within the tolerance limits surrounding
the corresponding new predicted target location, which
corresponds to

Otherwise, plan a robot-trajectory patch to
and [Fig. 7(b)].5

3) Determine whether the newly considered rendezvous
state lies within its tolerance limits (Fig. 8)

(21)

If it does, further replanning is not necessary:

a) robot is sent to the original rendezvous state if no
replanning was carried out, or

b) robot is sent to the revised rendezvous state if a
new robot patch was determined, and the cycle of

5Robot-trajectory patch planning will be discussed in Section V.

(a)

(b)

Fig. 8. (a) Interception is guaranteed if the revised rendezvous point is ahead
of the front tolerance limit. (b) Interception is not guaranteed if the revised
rendezvous point is behind the rear tolerance limit.

prediction and comparison is repeated by returning
to step 1).

Otherwise, replanning is necessary to ensure intercep-
tion, as will be discussed below.

b) Ensuring Interception:Once it has been determined
that further replanning is necessary, namely, the tolerance-limit
constraint is not satisfied, the problem of ensuring interception
must be considered. To achieve this objective, a conservative
strategy is proposed herein. The strategy is based on the
hypothesis that it is preferable for the robot to be early, rather
than late. Two cases are considered.

1) If for the revised rendezvous point, i.e., the robot
will arrive at the rendezvous state before the target does,
then, this point ensures interception [Fig. 8(a)].

2) Otherwise, and the robot must catch up to the
target. In this case, it must also be noted however that

is behind therear tolerance limit [Fig. 8(b)],
since (21) is not satisfied [see step 3)]. Thus, in order to
ensure interception, a newer rendezvous point must be
selected. Herein, this point is selected as (14).
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Fig. 9. Simulation of the object-catching process with the new planning
strategy (top view).

V. ROBOT-TRAJECTORY PLANNING

The optimal rendezvous-point planning problem formulated
and solved in the previous section relies on our ability to: 1)
carry out long-term target-trajectory predictions and 2) to plan
near-time-optimal robot trajectories to potential interception
points. The former issue was addressed in Section III, the
latter subproblem is addressed below.

There exists a large body of literature in the field of time-
optimal robot-trajectory planning (e.g., [18]–[21]). While these
and various other approaches not discussed herein usually
consider robot dynamics and yield optimal paths, the com-
putation times required for finding optimal PTP solutions are
prohibitive for current use in on-line mode.

Task-space quintic polynomials have been recently used
for robot trajectories in real-time applications. Thus, they
were adopted for our APPE system, as well. One must note,
however, that the “optimal-solution” feature of the proposed
APPE (versus the nonoptimality of tracking-based methods
and of other APPE systems reported in the literature) is based
on its ability to select the earliest rendezvous point on the
target’s predicted trajectory, denoted by herein. The use
of a different robot-trajectory planning method would simply
result in the determination and use of a different curve
in Fig. 4. Namely, the success of the APPE system proposed
in this paper is independent of the specific technique selected
due to its modularity (Fig. 1), although the location of the
optimal rendezvous point would vary from one robot-trajectory
planning technique to another,

Quintic polynomials are used herein for trajectory plan-
ning, since they permit a relatively simple calculation of
a trajectory based on the specification of initial and final
position, velocity, and acceleration constraints. The use of this
trajectory-planning method also allowed us to compare our
methods with other approaches which use quintic polynomials,
as well [3], [7]. The general form of the polynomial is

(22)

Since there are seven independent variables (six coefficients
and time), the variables are uniquely determined when the
motion time plus the initial and final states are specified [3]. In
our case, however, the motion time of the robot is considered
as the optimization variable that must be determined.

The quintic polynomial is inherently one dimensional, there-
fore, in general, three separate quintic trajectories would need
to be planned, one for each of the three Cartesian coordinate
axes. However, in the case of motion planning for object
interception, we can make the assumption that most of the
robot travel will occur in the direction of the first-planned
rendezvous point. Thus, it is more convenient to perform the
quintic-polynomial-based trajectory planning not in the world
coordinates, but in a specially defined coordinate system. This
system is defined so that one of the principal axes is lined up
with the vector from the robot starting point to the first-planned
rendezvous point. When the robot trajectory has to deviate
from this path, another two quintic polynomials need to be
used, one for each of the orthogonal principal axes. If the initial
motion direction is taken as (Fig. 6), the two secondary
directions (along and are then defined so that they
form a right-handed orthogonal coordinate system

To find the time-optimal quintic motion trajectory, the
motion time is minimized, subject to the robot’s performance
capability constraints. For simplification purposes, the robot’s
performance is described herein by the worst case velocity
and acceleration limits. Thus, a minimum travel time will
be achieved when either velocity or acceleration limits are
reached at some point during the trajectory execution. It is
also assumed that most of the travel will occur along the
direction, so that a near-optimal solution will be achieved when
the travel time is minimized for the quintic trajectory along
that direction.

This problem can be formulated as follows.
Given the initial and final conditions in terms of the required

robot position, velocity, and acceleration in direction,
and given the maximum velocity and acceleration limits of the
robot, and find the minimum travel time, such that

(23)

where

and (24)

and and are functions which return such motion
time that the given velocity or acceleration limit is achieved
during the execution of the trajectory.

The problem of finding and requires a numerical
solution when either of the initial (due to patch planning)
or final (due to rendezvous with a moving object) conditions
are nonstationary (nonzero velocity or acceleration). The algo-
rithm which accomplishes this task was implemented by using
a standard iterative numerical search procedure.

VI. SYSTEM IMPLEMENTATION

A. System Simulations

Prior to implementing the motion-planning strategies de-
scribed above, computer simulations were conducted for ver-
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ifying the operation of the proposed APPE system. As an
illustrative case, the two-dimensional object-catching problem
was formulated. To provide the input data for the example
considered herein, the object’s motion and the robot’s starting-
point positions were arbitrarily set to those provided in [7].
Therein, it is assumeda priori that the object’s intercep-
tion will occur on a predefined “catching line.” Thus, the
robot’s end-effector was initially positioned 160 mm above
the object’s motion plane, directly over the catching line.

The simulated experiment reported herein was performed
with the planning strategies presented in Sections IV and V.
The robot is allowed to intercept the object at any point along
the object’s trajectory. In Fig. 9, “RobSt” marks the robot
end-effector’s starting point, and “Pcatch” marks the point of
interception. Numbers above the target trajectory mark seconds
of target travel time, and the large circle indicates the robot’s
workspace.

The velocity component of the object is relatively small,
reaching a constant velocity of 21 mm/s after initial accelera-
tion from rest. The robot begins to move as soon as the object
enters the robot’s workspace. The robot’s acceleration limit
was set to 2 m/sand the velocity limit at 1 m/s. The object’s
motion was simulated by specifying an acceleration profile.
Target-trajectory predictions were made using the values of
the object’s position, velocity, and acceleration at a particular
point in time and extrapolating these based on the constant-
acceleration motion model. The object’s simulated motion data
was sampled at 0.025-s intervals. The trajectory replanning
time was set to 0.05 s.

As can be seen from Fig. 9, the robot is capable of inter-
cepting the target before it reaches the catching line (located
at mm). This, and other simulations not shown
here, have demonstrated the capability of our strategy for
successful time-optimal object interception without the restric-
tions imposed by constraining the potential rendezvous-point
positions.

B. Experimental APPE Prototype Configuration

Our present experimental system consists of a 6-degree-of-
freedom GMFanuc S-100 industrial robot with the standard
Fanuc Controller, an NC X–Y table (used for object motion),
and a computer-vision system. In order to improve overall
system performance, computations were performed on two
separate 80 486 PC’s, one devoted to tracking the object and
the other to planning the interception and communicating with
the robot controller. A 38 400-baud RS232C serial link was
used to transfer data between the two PC’s.

1) Tracking System:The tracking system consisted of a
Hitachi 30 Hz CCD camera, a Matrox 640B frame grabber,
and an 80 486 33-MHz PC. Since our emphasis is on visual
servoing, and not on computer vision, simplifications to the
object tracking problem were made. Objects being tracked
were marked using planar red circular markers. An active
red-color filter, developed in our laboratory, thresholds the
analog camera signals, such that only one feature, the circle’s
centroid, is tracked [22]. The CCD camera with a 25-mm
lens was placed 1.8 m above the surface of the X–Y table

at an angle of 10 from the table’s normal. This setup
yields a 600 400 mm field of view with 0.93 mm/pixel
resolution. The robot camera system was calibrated using the
monoview noncoplanar point technique proposed in [23]. The
error in and directions was less than 0.5%. At present, the
entire process (i.e., grabbing an image, finding the object’s
centroid, and updating the KF) takes65 ms. Once updated,
the KF, along with the global time at which the images were
obtained, is stored in a buffer, and the motion-planning system
is notified that new object data is available. At the planner’s
request, this data is sent to the second PC. The PC-to-PC serial
communication is interrupt driven; this allows the tracker to
continuously track the object without waiting for the other PC
to read the data.

2) Motion-Interception System:An 80 486DX4 100 MHz
PC was used to plan robot motion. This PC obtains the KF state
parameters, along with the global time at which the images
were obtained from the tracking system. Multiple-step-ahead
prediction is used to predict the object’s future trajectory,
which, in turn, is used to determine optimal robot–object ren-
dezvous points. The planner then generates a quintic trajectory,
such that the robot’s end-effector (a semispherical cage) will
land on the object. The PC communication with the Fanuc
robot controller is achieved via an RS232C serial link at 9600
baud rate, the fastest rate that the robot controller will allow.
The robot–PC serial communication is interrupt driven, with
the PC sending robot trajectory points at the robot’s request

220-ms increments). As more data becomes available from
the tracker, the robot trajectory is replanned, as necessary, to
ensure a successful catch.

C. Experimental Results and Discussion

The current experimental system is able to reliably intercept
objects, with an average error of less than 10 mm in each
direction, traveling on random trajectories with velocities of
up to 45 mm/s and accelerations greater than 200 mm/s
However, it should be remembered that the proposed APPE
was designed to bring the robot end-effector to a pregrasping
location near the object. Thus, errors of 10-mm magnitude
constitute very successful results.

Fig. 10 shows the results of an experimental trial in which
an object is moving at a constant velocity of 32 mm/s on a
linear trajectory, much like a part moving on a typical indus-
trial conveyor. Fig. 10(a)–(c) shows each coordinate direction,

and , versus time. In each figure, the object’s observed
actual trajectory, along with the robot’s initial trajectory (i.e.,
the trajectory that it would have been implemented without
replanning) and final trajectory are plotted. The final trajectory
implemented by the robot comprised 39 replanned patches.

Fig. 11 shows experimental results for an object moving on
a circular path of radius mm at 30 mm/s. The final
trajectory implemented by the robot comprised 44 replanned
patches.

Fig. 12 shows results for an object which is initially at
rest and then subsequently accelerates to a velocity of 45
mm/s after the robot has already started moving toward it,
thus forcing the robot to alter its trajectory significantly.
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(a)

(b)

(c)

Fig. 10. Intercepting an object moving at 32 mm/s on a linear trajectory.
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(a)

(b)

(c)

Fig. 11. Intercepting an object moving on a circular path of 280-mm radius at 30 mm/s.
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(a)

(b)

(c)

Fig. 12. Intercepting an initially stationary object.
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The trajectory implemented by the robot is the result of 44
replanned patches.

VII. CONCLUSIONS

The novel APPE system proposed in this paper comple-
ments other viable APPE systems previously suggested in the
literature for the interception of moving objects. The key to the
success of our APPE system is the effectiveness of its target-
trajectory prediction and robot-trajectory planning strategies.
As noted earlier, the object’s motion unpredictability would di-
minish this effectiveness, whereas other APPE systems which
advocate the use of fixed interception planes would be more
successful.
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