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Abstract—A novel active prediction, planning, and execution an object through a robot's workspace is predicted. Robot
(APPE) system is presented herein for the robotic interception of motion to intercept the object is then planned and executed.
moving objects. The primary feature of the proposed APPE Sys- This annroach can be used in an “active” mode (APPE), e.g.
tem is the ability to intercept the object at an optimal rendezvous 3 h the th t b ted ' 't
point, anywhere alon_g its pregjicted tra_jector_y, _vvithin Fhe rob_ot’s [3], where the three stages ma.ly e repef’" ed as pecessary 0
workspace. For the interception of objects in industrial settings, €nsure the successful completion of the interception task. In
the motion of which allows long-term predictability, this feature this context, a novel APPE system developed and implemented
is a significant improvement over earlier APPE systems. These in our laboratory will be described in this paper.
could only select a rendezvous point among a few nonoptimal  Appg-pased approaches constitute an alternative to
interception points considered. An APPE system's objective is tracking-based techniques, which essentially minimize the
5|mply to move the.robot to_the earliest pregrasping Iocat_lon. ! ' s
A fine-motion tracking algorithm can take over the motion difference between the state of the robot’s end-effector
control at that point, utilizing proximity sensors mounted on and the state of the moving object, [4], [5]. The principal
the robot’s end-effector. This approach eliminates the necessity gdvantage of APPE systems over tracking-based systems is
of tracking the motion of the object, as required by conven- hqir apijity to find an optimal solution to the interception-point

tional tracking-based techniques, where the distance between the . .
robot’'s end-effector and the object is reduced continuously. In planning problem. However, most APPE-based techniques

this paper, the proposed APPE system is first briefly introduced, reported in the literature target nonindustrial settings. They
and its individual modules are thereafter discussed in detail. normally sacrifice time optimality in favor of a guarantee of
Simulation and experimental results are presented in support of interception, either for fast-moving objects or for objects of
the developed optimal-interception strategy. which the Cartesian path topology and/or velocity profiles

Index Terms—Active prediction, planning, and execution sys- vary significantly over short periods of time. Therefore,
tem, robotic interception. they choose a rendezvous point among a limited number of

potential interception points considered, where these usually

I. INTRODUCTION correspond to the_ mtt_arsectlon of the .(mos.t current) estimated

. ) _ ) target trajectory with fixed planes (or lines in the planar cases).

KEY FEATURE OF intelligent robotic systems is the | yhis paper, the proposed novel technique allows the

—\ability to perform autonomously a multitude of task§yserception of the moving object at the earliest possible
without completea priori information, while adapting 10 yime "given the constraints of the robot's motion capabilities.
continuous changes in the working environment. An mportaWamely' the interception is not restricted to a choice among
problem in this field is the robotic interception of movinga few potential points, as with other APPE systems, but
objects. A common approach to the object-interception profygeted toward the selection of the best rendezvous point
lem is the utilization of a prediction, planning, and exe_CUt'OQnywhere on the target's predicted trajectory. Prior to the
(PPE) strategy [1], [2]. In a PPE strategy, the motion Qfescription of our research results, some APPE systems are

briefly reviewed below.
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within the workspace of the robot. These correspond to the
intersection of the ball's trajectory with three fixed “hit planes” World Model
selecteda priori perpendicular to the ball's direction of travel. PREDICTION

\‘ ‘
An expert system selects the most suitable rendezvous poi \ \ LTI \ N
Coordinate Target— :\\
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Butazzo et al. [7] developed an APPE system for the PLANNING

\\
interception of a planar object. The motion of the object ig
much less predictable than in the other cases described abope=
g
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The interception is always performed on the object plane alon Selection Grasping Strategic;

a virtual catching line. This constraint defines the rendezvoy
point as the intersection of the object’s trajectory and th
catching line. The starting position of the robot end-effectof
is at a fixed height above the catching line. The motion of th
robot in [7] (for the vertical motion of the end-effector only),
as well as in [3], is planned using quintic polynomials, wherg
robot motion time is defined by the arrival time of the targe{
at the rendezvous point.

Lastly, Mikesellet al. [8] developed an APPE system for
the robotic interception of an object moving in a plane and
bouncing off the walls of a square enclosure. As in [7], &g 1 ApPE system implementation.
rendezvous point is determined by first selecting one of the two

fixed intercept lines which the object’s trajectory intersects.
Once an intercept line is chosen, the actual rendezvous pdftdezvous with a moving target, where the target is defined

on it is chosen based on continuously updated object-traject@§/the “pregrasping” location for the objédt is desired that
prediction data. the rendezvous point be the “earliest” possible interception

point on the target trajectory. This optimality, however, can
only be achieved by evaluating all potential rendezvous points
Il. SYSTEM OVERVIEW AND PROBLEM DEFINITION on the target’s trajectory, and selecting the one to which the
bot would take the shortest time to travel.
According to the APPE system proposed in Fig. 1, the pri-

EXECUTION

1%

APPE approaches to robotic interception of moving objec'ig
use botha priori and on-line information to create interception L9 . i~
strategies. The cornerstone of the planning process is gry optimization problem at hand is, therefore, determmmg

selection, evaluation, and updating of a rendezvous point. T initial” optimal rendezvous point (planning module). |

in turn, depends on the ability of the planning module to pla{ﬁ antlc(ljpated that a Iz;rge bportlon onthbe computatu?]nal t|me
robot trajectories in an on-line mode. required to intercept the object would be spent at this stage.

The APPE approach assumes that the object trajectory dddis optimization problem can be formulated as a two-level

not vary significantly as a function of time and, thus, it i&r rocedure.
predictable. This principal feature of “long-term” predictability Outer loop: Evaluate potential rendezvous points on the

of the object motion can be exploited for finding the earliest target's predicted trajectory with respect to
interception point, rather than solely minimizing the difference robot-motion time and choose the earliest
between the states of the robot end-effector and the object. interception point. (This substage is a one-
The general APPE system developed in our laboratory is dimensional optimization problem.)
depicted in Fig. 1. The role of the “prediction module” is !nnerloop: Determine the minimum robot-motion time
to provide the planning and replanning modules with on-line from the initial state of the robatg,, ¢.) to a
predictions of the target's trajectory. The role of the “planning potential rendezvous poirtyy,gy) considered
module” is to determine the firstiptimal rendezvous point on by the outer loop. (As will be discussed later,
the initially predicted target trajectory and initiate the robot's for this substage, we recommend the use of any
end-effector motion to meet the object at this point. The role one of the on-line time-optimization techniques
of the “replanning module” is to locally modify the location reported in the literature.)

of the rendezvous point and generate new robot trajectorieshe subsequent replanning stage of the rendezvous point, in
as needed to ensure interception. This module is providessponse to new target-trajectory prediction data, assumes that
with on-line information about the robot’s current state antie optimality achieved above can be maintained if the target's
the latest predicted target trajectory. The “execution modultrajectory does not change significantly (replanning module).
implements the robot trajectories received from the plannifgthough, at this stage, the interception time can be further

and replanning modules.
Th P . g biecti f thi is the d | 10nce the end-effector reaches the pregrasping rendezvous point, it is
e primary objective of this paper Is the deve Opmer&pected that a fine-motion tracking strategy would be utilized to grasp the

of a motion-planning and execution strategy for a robot tject. Most likely, proximity sensors would be employed for active sensing.
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reduced, the primary concern is the successful interceptiendefined as [14]

of the target. This second problem can be formulated as a
two-step procedure. T = Pr1Zr—1 +wi-1, w2 N(0,Qy) (1)

1) Consider a new rendezvous point on tfeavly predicted wherez is the state vector, which in our case, is the Newtonian
target's trajectory and, if needed, state of the object being intercepted, agdis the state
2) modify the robot’s original trajectory to guarantee intefransition matrix relating the object’s past state to its current.
ception. The measurement model is given as
One must note, however, that extensive optimization cannot
be carried out at this replanning stage (as was the case in zi = Hyzi +op, v N(O, By) (2)

the planning of the initial rendezvous point), due to seve{gnere » is the noisy measurement obtained with the cam-

computational time restrictions. Herein, this is acceptablgyy andH is the measurement matrix relating the observed
since, in industrial settings, objects’ paths would not vamyeasurement to the true state of the target.

significantly anyway (e.g., grasping an object from a moving |, (1) and (2),w andv are zero-mean, mutually uncorre-

automatically guided vehicle). _ lated, white noise with) and R covariances (herein, assumed
In regard to the prediction of the target trajectory, th@onstant).

first optimization problem stated above requires long-term Gjyen the initial expected value of the state and its covari-
prediction, as is the case with all APPE systems, while thg,.e asi, and Py,

replanning stage requires short-term prediction, as is the case

with all tracking-based systems and the replanning module&[z(0)] = 2o, E[(z(0) — 2(0))(z(0) — 2(0))"] = Fy. (3)

of other APPE systems. Thus, in the next section, we first - L L .

present a novel long-term target-trajectory prediction algorithm ' "€ digital KF is given by the following five equations [14]:
(prediction module). The rendezvous-point planning issues arel) initial state-estimate extrapolation (one-step-ahead pre-
addressed in the subsequent section. dictor)

Tr(—) = Cr_1Zr—1(+) (4)

2) error-covariance extrapolation

I1l. TARGET-TRAJECTORY PREDICTION

The proposed prediction system is envisioned to have two
principal objectives within the framework of the APPE; it Pu(=) = &1 P (D)L +Q,_, (5)
provides the planning and replanning modules with predictions
of the target's trajectory and estimates of the uncertainty3) Kalman gain matrix update
associated with these predictions. Providing the replanning B T T 1
module with a measure of confidence is essential, so that it Ky = Py(—)H} [HyPr(—)H) + By (6)
can decide whether a replan is required. 4) optimal state-estimate extrapolation

A. Kalman Filter Z(+) = #1(—) + K[z — Hir ()] (7)

The three most common prediction approaches reporteds) covariance update
in the literature are the autoregressive models (ARM’s)
[9], a—B—y filters [2], and Kalman filters (KF's) [10]. Py(+) = [I — K1 Hy]P(—). (8)
Papanikolopoulost al. [11] investigated several prediction In modeling a two-dimensional system, the noise in the

approaches and found that stochasth approaches, such aSaHEFy directions are assumed to be independent and, thus,
KF, are very robust in the face of noise.

The central element of our prediction module is the Klt—hex andy states are decoupled. A constant-velocity target

algorithm. The KF algorithm receives its information from (notion model is usgd for each directiaf() = 0. In.pract|ce,
. . . _however, the velocity does undergo at least slight changes.
computer-vision system that continuously tracks the objec

position in world coordinates. The KF is a computationall 15']3 can be modeled by a continuous-time white naigs
efficient algorithm which generates an optimal least-squares

estimate from a sequence of noisy observations [12]. For linear #(t) = (1) (9)
systems, it produces a new optimal estimate from an additional

observation without having to reprocess past data. The KF c4Rere

also be u_sed to obtain multipl_e-step-ahead. predictions [13] by E[i(t)] =0 E[Bt)5(r)] = 028(f — 7).
propagating the KF extrapolation equation (i.e., one-step-ahead
predictor). Herein, the use of a fading memory filter (FMF) [14] is also

In our system, the function of the KF is to obtain optimaproposed to place more emphasis on the newest data. With an
estimates of the target’s present position, as well as predictign@F, old data is discarded by increasing the covariance of the

of the target's future trajectory. measurement noise for past measurements:
The KF is a state-space formulation; thus, the model de-* i o . .
scribing the target must also be expressed in state-space folf. = '~ Bz, k=35-17-2-- s2>21, j2>1

For example, the two-dimensional system model for the KF (10)
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Fig. 2. Best overall constant-velocity KF for stop-and-go motion.

whereR;, is the regular noise covarianch;, is the new noise Markov filters were also examined for various planar object

covariance, and paths. Through simulations, improvements in long-term-
prediction performance were shown to be obtainable by

5= (11) : ;
: decreasing the FMF factas. However, by decreasing the
In (11) above,At is the measurement interval andis the FMF factor, the KF places less emphasis on newer data.
age-weighting time constant. It then follows that This makes the filter Ies; responsive to sudden changes in
the object’s path. Thus, in selecting a KF for the proposed
r = (™M TR, m=0,1,2,---. (12) APPE, a compromise had to be achieved. A KF that provides

) . reasonable one-step-ahead tracking and good, stable long-term
A recursive KF can be constructed under these assumpt'oﬁ'r%dictions was selected.

It is identical to the standard KF given by (4)—(8), except for |, e exemplary *
a modified error-covariance-extrapolation equation (i.e.,
plant’s covariance term is now multiplied by the factdr

worst case scenario” simulation, ad-
Rfessed herein, the object accelerated uniformly at 50 fm/s
to a maximum velocity of 125 mm/s. After traveling at
/ / ‘s this velocity for 0.3 s, it decelerated to rest, remained sta-
Pi(=) = sbePry (981 + Qi (13) tionary fory2.7 s, and then accelerated to its maximum ve-
A KF must be “tuned,” via the adjustment of all the variabldocity, at which it traveled until it left the camera’s field
parameters, by analyzing the system’s performance (in tok view (an unlikely motion in industrial environments).
form of the residual series). The parameters to be tuned &eperimposed onto the object’s trajectory was Gaussian white
problem specific but usually include the decorrelation time amibise with a 3-mm standard deviation, approximately twice
the standard deviation of the white noise driving the systetine magnitude of the noise present in our current system.
covariance. The object’s trajectory was sampled at standard video rate,
Most KF tuning criteria simply compare the target's obi5 Hz.
served behavior to the estimates of the KF. A well-tuned KF is Fig. 2 shows the simulation results based on a constant-
one that tracks the target well. However, through simulationgglocity target motion model which has a 1.11-s time constant.
one would note that a KF well tuned for one-step-ahed&lotted on each curve, besides the object’s path and the one-
tracking will usually not provide good long-term predictionsstep (i.e., 0.067 s) KF estimate of its current position, are
Thus, using a similar line of reasoning, a long-term predictiyaredictions of the object’s future position, 1.0 and 2.0 s into
KF must be selected by comparing the KF’'s predictive arttle future.
tracking performance to the true behavior of the target.
IV. ROBOT-MOTION PLANNING

B. Simulations Both the optimal planning of the initial rendezvous-point

Besides the constant-velocity model described abowaage and the subsequent replanning of the modified points
constant-acceleration, constant-jerk, and first-order Gawstage will be addressed in this section.
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Fig. 3. Predicted target trajectory and planned time-optimal robot trajecto- Global clock time, ¢
ries.

Fig. 4. Travel/arrival-time diagram.

A. Search for the Initial Rendezvous Point

1) Problem Formulation:The determination of the opti- timet is plotted along the abscissa. Potential rendezvous times
mal (initial) rendezvous point involves a one-dimensionalre represented on the abscissaphyp;,+1, etc. Robot travel
search along the predicted target trajectory, defined hereintigses »;, and target arrival times; to potential rendezvous
{H(t), H(t)}, for the earliest interception point. The predictedtates are plotted on the ordinate.
target trajectory is parameterized by a global clock titne  The travel-time diagram shown in Fig. 4 is constructed as
A rendezvous point is characterized by both the potentigilows.
rendezvous time; and the correspondingendezvous state 1) Select a predicted state on the target trajectory
{H(t). H(t)}e—p, 2 , {H(t),H(t)}|:=p, (Fig. 3) as a potential rendezvous

Potential rendezvous points dH(¢), H(t)} can be eval- state. The associated rendezvous times marked on
uated using any on-line point-to-paint (PTP) optimal robot-  the abscissa of the travel/arrival-time diagram (Fig. 4).
trajectory planning technique (see Section V). Such a calcu—z) The target arrives at Sta{d{(t)’H(t)Ht:pj at timeh;.

lation would provide the minimum robot travel timeg to This is marked by the-t” symbol on the travel/arrival-
{H(t),H(t)}|:=p, (Fig. 3), as well as the robot trajectory to time diagram.
that state’ 3) The robot, on the other hand, takes timgeto arrive

, : . )

2) Proposed Solution:Most solutions to the global time- at {H(t),H}It:p., as marked by thes” symbol on the
optimal PTP trajectory-planning problem (with two fixed travel/arrival-time diagram. (It should be noted that only
boundary points) reported in the literature are computationally ... _ 1 - indicates the minimum-time rendezvous point).
intensive and, thus, not suitable for on-line planning. In our 4 Tjhe a{ctual target state at the time the robot ar-
case, since only the initial boundary poia},. g,) is specified, rives at state {H(t),H(t)}h:p. is designated by
the solution of the time-optimal rendezvous problem further (H(®), H(t)}|1=0; Whereo; — T? (This assumes that

) =o0j i — '

rec({jwre_s :he qdd|t|onal_steat[ch 't%f ttr?e target trz;\_Jectory for an r; # hy; namely, the proposed rendezvous point is not
end poin (qf,qf) consistent wi e minimization process. the minimum-time point).

Thus, for on-line planning, a computationally inexpensive, . . : T
P g P y P To reiterateclock timesp; ando;, associated with different

near-optimal solution is necessary. )
Once a PTP-motion time-optimal trajectory-planning tecfidrget states, are plotted on the abscissa. On the other hand,

nique is selected, the problem that remains to be addresi@yeV arrival timesh; andr;, associateq with théime that
is finding the optimal rendezvous point on the predictetﬁ'e target and robot take to reach a particular state, are plotted

target trajectory. The former issue is addressed in SectiBi Fhe ordinate. . . .
V, while, herein, we assume that such a solution algorithm SInce the target trajectory is parameterizedtbghe target

is available for finding the minimum robot-travel timg to a'ival-time function = h(t) is simply a straight line
a specific potential rendezvous state considered, within ot slope 1. A function describing the robot travel times to
one-dimensional optimization search. points on the target trajectory is defined hereinras r(t).

A potential rendezvous point is characterized by the arrivane interset_:tion* ofr(¢) and h(#) designates the optimal
times of both the robot and the target at the correspondiffgidezvoustime”, namely, the earliest time that the robot
rendezvous state. To illustrate this evaluatiotrazel-time di- ©€nd-effector can reach the same location with the velocity as
agramis constructed (Fig. 4). In this diagram, the global cloc® target. As expected, except for the intersection(¢f and

h(t) at timep*, a difference will exist between; andh;.
2Each rendezvous-point is defined agra+ 1-dimensional vector (where Using the above definitions, the time-optimal rendezvous-

n |3sthe number of degrees of freedom of the target's mobility). - - Point planning problem can be stated as follows.
Thus, the robot trajectory to each potential rendezvous state, including he“F. d th liest f ibl d int
optimal rendezvous state, is found as a byproduct of the search for the optimal In e earlies easible rendezvous poin

rendezvous-point. ({H(t),H(t)}h:pj,pj), such thatr; = h;.”
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Although the use of a specific robot-trajectory planning b) The temporal convergence criteriorGiven the above
method would vary the value of the achievable optimal motidormulation for the objective function, the solution to the
time r*, this could be simply seen as obtaining a differeendezvous-point problem is achieved by iteratively increasing
r(t) curve, which would naturally intersedi(¢) in Fig. 4 the accuracy ofr(¢), in order to improve upony. The
at a different location. Thus, the success of the interceptioconvergence criterion for the minimization @f can be
strategy proposed in this paper is independent of the specdigermined by considering the cost of each minimization step.
robot-trajectory planning technique selected. The time cost of improvement, namely, the period of time

As the principal justification for the formulation presentedequired to compute a new robot trajectory to the proposed
in this paper, it must be noted that the robot travel tini® rendezvous point, should not exceed the expected reduction
cannot be analytically obtained, nor can it be exactly evaluatedinterception time due to an additional iteration.
via numerical methods in an on-line manner. Thus, herein, asThe decision-making procedure for the convergence of the
part of the general APPE strategy, a numerical approximatiarinimization is as follows.

of (¢) based only on the calculations of optimal robot motion 1) Consider a new potential rendezvous timg deter-
times to few potential rendezvous points is proposed. Since an  mined as the intersection of (the current approximation

approximationof »(¢) is used to find the intersection of¢) of) »(t) and h(t).
andh(t), the true value op* will never be exactly determined.  2) Considerh; (the target arrival time), as the minimum
In other words, the value of the approximated) curve at possible interception time far; (14).

the intersection point* will always be different than the true 3) Determine thepotentialimprovement in the interception
(minimum) robot-travel time to the rendezvous point denoted  time At; with respect to the previous iteration

by p*. Thus, in order to determine the “achievable” optimal

rendezvous point, an iterative search procedure has been At; = (§ — hy). (16)
devised. In this algorithm, the robot-travel time functioft)

is iteratively improved based on the new calculations of the 4) If the time ¢, that it takes to calculate the near-time-
true robot-motion times to potential rendezvous states found  optimal PTP robot motion to{ H(t), H(t)}|:—p, is

in earlier iterations. The central element of this algorithm greater thanmA¢;, namely,

is an objective function, defined below, which is calculated

at every iteration to evaluate the potential rendezvous point At; <ty a7
at hand.
a) The objective function: interception timéis stated then, the optimization algorithm has converged.

above, examination of Fig. 4 indicates that potential ren- Otherwise, (t) is reapproximated using the additional true
dezvous points for whiclp; < p* would require the robot to ropot-motion timer; calculated for{ﬁr(t)’1@[(t)}|t=pj7 and
“‘chase” the target, since the robot cannot reach these poigigps 1)-4) are repeated.
prior to the target’s arrival. If the robot could catch up to the The above convergence criterion, (17), is “temporal” in
target before it moves out of the robot's workspace, it wouldature and is only concerned with the iterative improvement
catch the target at an interception time greater tharPoints estimation of(t).
for which p; > p*, on the other hand, would require the robot  ¢) Coping with uncertainties:Uncertainties in the esti-
to wait for the target, with an interception time also greatgfation of the target’s trajectory(t) complicate the search for
than ;. Thus, the objective-function value of a potentiajhe intersection of-(t) and h(t) at every iteration. Thus, for
rendezvous point{H(t), H(t)}|:=p;. ;) can be defined as a certainr(t) approximation at hand, the problem introduced
the corresponding estimated “real” interception time at by the uncertainty in the target position is the determination
which the robot would intercept the target [16] as to whether further effort is required to improve the spatial

position of the end-effector with respect to the predicted target
i S location at the rendezvous time (namely, deciding when to
v, vor o (14) stop the search algorithm for the exact intersectiorh @)

hy, ) < hy and r(t)).

Given an estimate of the variance of a predicted target
where V;. is an average& priori known) robot end-effector location {H(t), H()}|.=,, (provided by the prediction mod-
speed, and’ is an average (on-line calculated) target speedle), an uncertainty ellipse [17] and a corresponding tolerance
One can note that the calculation of the estimated interceptiggion can be constructed around the predicted point. The front
time is simply a measure of the value of a particular planneghd rear limits of the tolerance region can be represented by
rendezvous point and does not necessarily reflect a compleigd limiting points on the travel-time diagram, nameby;
plan to intercept the target at this interception time. The actygdd »+ (Fig. 5). The set of all such limiting points forms the
interception time may be different due to replanning, as wilblerance-limit lines about the target arrival-time line.
be described in Section I1V-B. For the set of rendezvous pointsThe tolerance limitsZ’(0;) provide the positional conver-
{p;} considered so far, the current best achievable interceptigénce constraint corresponding to a potential rendezvous time
time ¢ is then defined as p;, represented herein as

7’j—h
~ 3T
Y; =

= min{y,}. (15) p; € T(0;)- (18)
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Global clock time, ¢ Fig. 6. The schematic view of the robotic interception system.

Fig. 5. Representation of the tolerance limits around a point on the predicted
target trajectory. B. Replanning

If the rendezvous-point planner described in Section IV-A
Equation (18) is used as a necessary condition for the convgs provided with accurate information, then the robot could
gence of the rendezvous-point selection algorithm. intercept the target at the first planned optimal rendezvous

3) The Rendezvous-Point Planning Algorithifihe preced- point. However, uncertainties in the model of the target motion

ing section provided a basis for the formulation of the ongesult in inaccurate predictions of the target trajectory. In this
dimensional rendezvous-point planning optimization problemontext, the primary purpose of replanning is to locally modify
which is minimize the interception timg subject to the posi- the initial optimal rendezvous point, so that interception is
tional convergence criterion: guaranteed, and not to further improve the interception time.
A new strategy is required for this task, since the repeated
application of aroptimalrendezvous-point selection algorithm

The comprehensive planning algorithm to solve (19) is dsr determining improved rendezvous points would not be

follows. feasible due to computation-time constraints.

1) Start the approximation of(¢) by selecting two extreme In the proposed strategy, replanning entails altering the
states{ H(t), H(t)}|r=p,, {H(t), H(t)}|,=p, ON the pre- unexecuted portion of the robot trajectory by planning a
dicted target trajectory (for example, the entry and exitajectory patch to a newly selected rendezvous point (Fig. 6).
intersections of the predicted object trajectory with thilotion continuity is maintained at the patch starting point.
workspace envelope of the robot). Set 2. Replanning includes two successive examinations:

2) Calculate the robot motion times, and r» to the 1) determining whether a new rendezvous point, chosen on

two rendezvous states using a PTP near-time-optimal  the newly predicted target trajectory, would potentially
trajectory planning algorithm, record the values of improve upon the robot-motion plan currently under

z=min{y(p;)} where p; € T(0;). (19)

and ho, and sety = 0.

execution;

3) Constructr(t) using {r;}. 2) determining whether the target can be intercepted at this

4) Sety = j+ 1. _ new rendezvous point and, if not, how a modified ren-

5) Estimate the intersection oft) andh(t)," p;, such that dezvous point can be chosen to guarantee interception.
pj € T(o;). a) Determinin i [ :

) e ) g the potential for improvement:

6) _I;)(;:termm?hi a_nd 'fytﬁ 0, cft1_eck| whe(;heg N hﬂ't_< tp; Replanning must be motivated by a potential improvement
'l rue, selp” =p as e opiimaj rendezvous time _anqlpon the currently aimed rendezvous point, considering the
stop, otherwise, continue. (Note thats defined only if newly predicted target trajectoryH’(#) H’(t)}. The cur-

7 ycjcagféep 8.)near-time-o timal motion torentIy aimed rendezvous stal{d{(t),H(t)}h:pj must first

. . plmz be compared to a new potential rendezvous state on the newly
{H(t), H(t)}|i=p,, With motion timer;. : : .
. N . . predicted target trajectory [Fig. 7(a) and (b)].

8) Determiney;, sety = min{y;}, and recordj corre- ™ comparison procedure is as follows
sponding tog. . o _

9) Go to step 3). 1) Find a state on the newly-predicted target trajectory

The above algorithm was proven to monotonically converge
to the optimal solution{ H(t), H(t)}|:=p in [16].

4The travel-time line is shifted to the right an amoupnt;.. to accommodate
the time required for an estimated maximum number of planning iterations.

closest in Cartesian distance H(¢)|.=;. Denote this
state as{H'(t), H(t)}|i=p -

2) Determine whetheH (t)|;=; is within the uncertainty
ellipse surrounding the new rendezvous state

However, instead of fixing a bulk cost to planning, the time cost of planning
could be incorporated into each calculation of the robot travel time and

interception time. Such an adaptive approach is presented in [16].

H(t)|1=p € U(H'(t)]s=p ). (20)
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Fig. 7. Spatial evaluation of the location of the currently aimed rendezvo
state.

If it is, then, the current robot motion under execution
would take the end-effector to a spatial location which
is sufficiently close to{H'(t), H(t)}|—p [Fig. 7(a)].
However, the algorithm must now proceed to step
3) to check whether the spatial location of the end-
effector lies within the tolerance limits surroundin%
the corresponding new predicted target location, whi

o). ()

oo o)
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{H’(t),H'(t)}zzo,

Eo.HO)

@

HoOEO)

(b)

Elsg. 8. (@) Interception is guaranteed if the revised rendezvous point is ahead
of the front tolerance limit. (b) Interception is not guaranteed if the revised
rendezvous point is behind the rear tolerance limit.

prediction and comparison is repeated by returning
to step 1).

Otherwise, replanning is necessary to ensure intercep-
tion, as will be discussed below.

b) Ensuring Interception:Once it has been determined

nat further replanning is necessary, namely, the tolerance-limit

corresponds ta/ = . constraint is not satisfied, the problem of ensuring interception

Otherwise, plan a robot-trajectory patch
{H'(t),H(t)}|i1= ando’ = ¢’ [Fig. 7(b)]>

3)
state lies within its tolerance limits (Fig. 8) )
1
p e T'(). (22)
If it does, further replanning is not necessary: 2)

a) robot is sent to the original rendezvous state if no
replanning was carried out, or

b) robot is sent to the revised rendezvous state if a
new robot patch was determined, and the cycle of

SRobot-trajectory patch planning will be discussed in Section V.

Jnust be considered. To achieve this objective, a conservative
strategy is proposed herein. The strategy is based on the

Determine whether the newly considered rendezvon¥p°the3is that it is preferable for the robot to be early, rather
than late. Two cases are considered.

If for the revised rendezvous point,< #/, i.e., the robot

will arrive at the rendezvous state before the target does,
then, this point ensures interception [Fig. 8(a)].
Otherwise,” >k’ and the robot must catch up to the
target. In this case, it must also be noted however that
H'(t)|;—p is behind therear tolerance limit [Fig. 8(b)],
since (21) is not satisfied [see step 3)]. Thus, in order to
ensure interception, a newer rendezvous point must be
selected. Herein, this point is selectedpds= v’ (14).
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Since there are seven independent variables (six coefficients
and time), the variables are uniquely determined when the

200 : e |- ag N - motion time plus the initial and final states are specified [3]. In
' LX) ! our case, however, the motion time of the robot is considered
100 chtbhv\gg‘ . ] as the optimization variable that must be determined.

The quintic polynomial is inherently one dimensional, there-
fore, in general, three separate quintic trajectories would need
to be planned, one for each of the three Cartesian coordinate
‘ ‘ axes. However, in the case of motion planning for object
| 3 interception, we can make the assumption that most of the
N ‘ robot travel will occur in the direction of the first-planned
| ~Catchingline~ | rendezvous point. Thus, it is more convenient to perform the

quintic-polynomial-based trajectory planning not in the world
coordinates, but in a specially defined coordinate system. This
system is defined so that one of the principal axes is lined up
X (mm) with the vector from the robot starting point to the first-planned
Fig. 9. Simulation of the object-catching process with the new plannirr ndeZ\_IOUS point. When the r‘?th traJeCtorY has to deviate
strategy (top view). rom this path, another two quintic polynomials need to be
used, one for each of the orthogonal principal axes. If the initial
motion direction is taken aX¢ (Fig. 6), the two secondary
directions (alongYy and Zg) are then defined so that they

The optimal rendezvous-point planning problem formulategfdrm a right-handed orthogonal coordinate system
and solved in the previous section relies on our ability to: 1) To find the time-optimal quintic motion trajectory, the
carry out long-term target-trajectory predictions and 2) to planotion time is minimized, subject to the robot’s performance
near-time-optimal robot trajectories to potential interceptiotapability constraints. For simplification purposes, the robot’s
points. The former issue was addressed in Section lll, therformance is described herein by the worst case velocity
latter subproblem is addressed below. and acceleration limits. Thus, a minimum travel time will

There exists a large body of literature in the field of timePe achieved when either velocity or acceleration limits are
optimal robot-trajectory planning (e.g., [18]-[21]). While theséeached at some point during the trajectory execution. It is
and various other approaches not discussed herein usu@lfP assumed that most of the travel will occur along e
consider robot dynamics and yield optimal paths, the corflirection, so that a near-optimal solution will be achieved when
putation times required for finding optimal PTP solutions afe travel time is minimized for the quintic trajectory along
prohibitive for current use in on-line mode. that direction.

Task-space quintic polynomials have been recently used! NS Problem can be formulated as follows. ,
for robot trajectories in real-time applications. Thus, the Given th? initial an(_j final conditions m_terr_ns ofthe re_quwed
were adopted for our APPE system, as well. One must noépm _posmon, vel_ocny, and gcceleranon ”XQ_ d|r_ec_t|on,
however, that the “optimal-solution” feature of the propose{%‘inOI given the maximum velocn_y_and accelera_non limits of the
APPE (versus the nonoptimality of tracking-based method220h Vim and Ay, find the minimum travel time, such that
and of other APPE systems reported in the literature) is based timin = max(tyel, tacc) (23)
on its ability to select the earliest rendezvous point on the
target’s predicted trajectory, denotedy r* herein. The use where
of a different robot-trajectory planning method would simply tvel = fo(Viim), and tacc = fo(Alim) (24)
result in the determination and use of a differeft) curve

in Fig. 4. Namely, the success of the APPE system propos¥fl /+(-) and fa(-) are functions which return such motion

in this paper is independent of the specific technique selecgﬁ(_a thar;[ the given velfocri]ty or acceleration limit is achieved
due to its modularity (Fig. 1), although the location of th uring the execution of the trajectory.

optimal rendezvous point would vary from one robot—trajectoré/ Thg problem qf findingtvei and face requires a numenc.al
. . olution when either of the initial (due to patch planning)
planning technique to another,

Quintic polynomials are used herein for trajectory planqr final (due to rendezvous with a moving object) conditions
re nonstationary (nonzero velocity or acceleration). The algo-

nlrl[g,. su:ce tgey é)ermntha relatll\;_elyt.smpie. C.,?kimat';nf. Ofithm which accomplishes this task was implemented by using
a trajectory based on the specilication of Intal and TNgy g1an4arq jterative numerical search procedure.
position, velocity, and acceleration constraints. The use of this

N A S SIS .

-100

-200

-200 0 200 400

V. ROBOT-TRAJECTORY PLANNING

trajectory-planning method also allowed us to compare our VI. SYSTEM IMPLEMENTATION
methods with other approaches which use quintic polynomials, _ )
as well [3], [7]. The general form of the polynomial is A. System Simulations

) Prior to implementing the motion-planning strategies de-
q(t) = qo + it + @t® +qat® + @t +¢5t°.  (22) scribed above, computer simulations were conducted for ver-
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ifying the operation of the proposed APPE system. As at an angle of~10° from the table’s normal. This setup
illustrative case, the two-dimensional object-catching probleymelds a 600x 400 mm field of view with~0.93 mm/pixel
was formulated. To provide the input data for the examptesolution. The robot camera system was calibrated using the
considered herein, the object’'s motion and the robot’s startimponoview noncoplanar point technique proposed in [23]. The
point positions were arbitrarily set to those provided in [7Error inz andy directions was less than 0.5%. At present, the
Therein, it is assumeé priori that the object’s intercep- entire process (i.e., grabbing an image, finding the object’s
tion will occur on a predefined “catching line.” Thus, thecentroid, and updating the KF) takes65 ms. Once updated,
robot’'s end-effector was initially positioned 160 mm abovthe KF, along with the global time at which the images were
the object’s motion plane, directly over the catching line. obtained, is stored in a buffer, and the motion-planning system
The simulated experiment reported herein was performednotified that new object data is available. At the planner’'s
with the planning strategies presented in Sections IV and kéquest, this data is sent to the second PC. The PC-to-PC serial
The robot is allowed to intercept the object at any point alormpmmunication is interrupt driven; this allows the tracker to
the object’s trajectory. In Fig. 9, “RobSt” marks the robotontinuously track the object without waiting for the other PC
end-effector’s starting point, and “Pcatch” marks the point @6 read the data.
interception. Numbers above the target trajectory mark second®) Motion-Interception SystemAn 80486DX4 100 MHz
of target travel time, and the large circle indicates the robotAC was used to plan robot motion. This PC obtains the KF state
workspace. parameters, along with the global time at which the images
The Y velocity component of the object is relatively smallwere obtained from the tracking system. Multiple-step-ahead
reaching a constant velocity of 21 mm/s after initial accelergrediction is used to predict the object's future trajectory,
tion from rest. The robot begins to move as soon as the objedtich, in turn, is used to determine optimal robot—object ren-
enters the robot’'s workspace. The robot's acceleration lindezvous points. The planner then generates a quintic trajectory,
was set to 2 mfsand the velocity limit at 1 m/s. The object’ssuch that the robot’s end-effector (a semispherical cage) will
motion was simulated by specifying an acceleration profiland on the object. The PC communication with the Fanuc
Target-trajectory predictions were made using the values rabot controller is achieved via an RS232C serial link at 9600
the object’s position, velocity, and acceleration at a particulaaud rate, the fastest rate that the robot controller will allow.
point in time and extrapolating these based on the constanhe robot—PC serial communication is interrupt driven, with
acceleration motion model. The object’s simulated motion datae PC sending robot trajectory points at the robot’s request
was sampled at 0.025-s intervals. The trajectory replannifg220-ms increments). As more data becomes available from
time was set to 0.05 s. the tracker, the robot trajectory is replanned, as necessary, to
As can be seen from Fig. 9, the robot is capable of inteensure a successful catch.
cepting the target before it reaches the catching line (located
at X = 120 mm). This, and other simulations not shown
here, have demonstrated the capability of our strategy fer Experimental Results and Discussion

successful time-optimal object interception without the restric- The current experimental system is able to reliably intercept
tions imposed by constraining the potential rendezvous-poiiijects, with an average error of less than 10 mm in each
positions. direction, traveling on random trajectories with velocities of
up to 45 mm/s and accelerations greater than 200 fm/s
However, it should be remembered that the proposed APPE
was designed to bring the robot end-effector to a pregrasping
Our present experimental system consists of a 6-degreedotzation near the object. Thus, errors of 10-mm magnitude
freedom GMFanuc S-100 industrial robot with the standambnstitute very successful results.
Fanuc Controller, an NC X-Y table (used for object motion), Fig. 10 shows the results of an experimental trial in which
and a computer-vision system. In order to improve overah object is moving at a constant velocity of 32 mm/s on a
system performance, computations were performed on tlear trajectory, much like a part moving on a typical indus-
separate 80486 PC's, one devoted to tracking the object aridl conveyor. Fig. 10(a)—(c) shows each coordinate direction,
the other to planning the interception and communicating withi, Y, and 7, versus time. In each figure, the object’s observed
the robot controller. A 38400-baud RS232C serial link waactual trajectory, along with the robot’s initial trajectory (i.e.,
used to transfer data between the two PC’s. the trajectory that it would have been implemented without
1) Tracking SystemThe tracking system consisted of aeplanning) and final trajectory are plotted. The final trajectory
Hitachi 30 Hz CCD camera, a Matrox 640B frame grabbeimplemented by the robot comprised 39 replanned patches.
and an 80486 33-MHz PC. Since our emphasis is on visualFig. 11 shows experimental results for an object moving on
servoing, and not on computer vision, simplifications to the circular path of radiugz = 280 mm at 30 mm/s. The final
object tracking problem were made. Objects being trackém@jectory implemented by the robot comprised 44 replanned
were marked using planar red circular markers. An actiymtches.
red-color filter, developed in our laboratory, thresholds the Fig. 12 shows results for an object which is initially at
analog camera signals, such that only one feature, the circlest and then subsequently accelerates to a velocity of 45
centroid, is tracked [22]. The CCD camera with a 25-mmmm/s after the robot has already started moving toward it,
lens was placed 1.8 m above the surface of the X-Y tahleus forcing the robot to alter its trajectory significantly.

B. Experimental APPE Prototype Configuration
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The trajectory implemented by the robot is the result of 4#2] R. Safaee-Rad, K. C. Smith, B. Benhabib, and I. Tchouhanov, “3D

replanned patches. location estimation of circular features for machine visid&EE Trans.
Robot. Automat.vol. 8, pp. 624-640, Oct. 1992.

[23] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy

3D machine vision metrology using off-the shelf TV cameras and

lenses,”|IEEE Trans. Robot. Automatvol. RA-3, no. 4, pp. 323-344,

Aug. 1987.

VII. CONCLUSIONS

The novel APPE system proposed in this paper comple-
ments other viable APPE systems previously suggested in the
literature for the interception of moving objects. The key to the
success of our APPE system is the effectiveness of its target-
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advocate the use of fixed interception planes would be mc

respectively.
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