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Abstract. An important task for autonomous industrial robotic systems is the interception of moving
objects. In order to achieve this objective, an on-line robot-motion planning technique that utilizes
real-time sensory feedback about the object’s motion is needed. In this paper, an Ideal Proportional
Navigation Guidance (IPNG) based technique is utilized for on-line robot-motion planning. One must
note, however, that navigation-guidance techniques were originally developed for bringing the inter-
ceptor into a collision course with (hostile) airborne targets. Therefore, in our case, a conventional
tracking technique must be utilized as a subsequent phase to an initial IPNG-based robot-motion
planning phase in order to ensure smooth interception.

The implementation of the hybrid scheme in industrial settings, where one may not have access to
the robot’s dynamic model nor to the joints’ controllers, is discussed. Real-time experimental results
using an industrial robot and a computer-vision system are presented, confirming the (interception-
time) superiority of our proposed scheme over conventional tracking techniques.
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1. Introduction

Recent trends in industry, moving from mass production to mass customization,
have contributed to the urgent call for the development of intelligent robotic sys-
tems that can operate autonomously. In this context, robotic interception is defined
as approaching a moving object and matching its location and velocity (i.e., bring-
ing the end-effector of the manipulator to a pre-grasp rendezvous location with
the moving object), in the shortest possible time. On-line robot-motion planning is
required for successful interception if the motion of the object is not completely
known a priori. Various motion-planning strategies have been reported in the lit-
erature for this purpose, depending on the object’s motion type. In this paper, we
present the implementation of a navigation-based robot-motion planning technique
for the interception of “maneuvering” and “non-maneuvering” objects using an
industrial robotic system. A target is considered to be maneuvering if it varies its
motion randomly and quickly, making time-optimal interception a difficult task.
In contrast, a target is considered to be non-maneuvering if it moves on a contin-
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uous path with constant velocity or acceleration, enabling the accurate long-term
prediction of the target’s motion for time-optimal interception.

Prediction-based techniques have been proposed for robotic interception when
the object’s motion is of “non-maneuvering” type. In such systems, the object’s
motion through the robot’s workspace is predicted and, subsequently, the robot’s
trajectory to an anticipated rendezvous point on the (long-term-predicted) object
path is planned and executed. Such systems are referred to as Prediction, Plan-
ning and Execution (PPE) Systems, e.g., [1]. The stages of PPE can be used in
an “active” mode to ensure the successful completion of the interception
task, hence, APPE. The cornerstone of APPE techniques is their capability of
re-planning the rendezvous-point, in response to changes in the predicted object
trajectory.

An APPE approach was used by Buttazzo et al. [2] to catch a planar toy-mouse,
and by Fernandes and Lima [3] to catch ping-pong balls rolling on a table. In the
APPE approach proposed by Croft et al. [4], the potential rendezvous points are
not restricted to a small set of candidate points. Instead, they are optimally selected
(anywhere) along the predicted object’s trajectory subject to the robot’s motion
constraints.

Visual-servoing systems have been proposed to track and intercept maneuvering
objects (e.g., [5, 6]). Such systems continually minimize the difference in states of
the object and the end-effector. This constitutes position-based servoing. Alter-
natively, in image-based servoing systems, feedback control values are computed
directly from feature vectors in the camera image plane (e.g., [7]). Due to their
computational efficiency, visual-servoing systems are well suited for tracking ma-
neuvering objects. However, trying to match the object’s state when the robot is far
may not be advantageous. Lin et al. [8] addressed this problem by using a heuristic
coarse-tuning method to bring the end-effector to the vicinity of the moving object
and subsequently switching to a fine-tuning method when the robot is within a
pre-defined distance of the object.

Navigation-guidance laws have also been widely used for tracking and inter-
cepting maneuvering targets. However, they have been predominantly implemented
in tracking and intercepting airborne missiles and evasive aircrafts. Due to its sim-
plicity of onboard implementation, Proportional Navigation Guidance (PNG) has
been the most widely researched and used guidance law (e.g., [9]). There have
been very few attempts, however, to use guidance laws for robotic-interception of
moving objects. The utilization of a navigation-based technique in robotics was
first reported by Piccardo and Hondred [10], who utilized a PNG law to intercept
an object moving on a straight line. No experimental results were reported. More
recently, Su and Xi [11] have also proposed a guidance-based strategy for moving-
object interception. In this method, the angle between the Line-of-Sight (LOS) (i.e.,
a line connecting the interceptor to the target) and the object velocity is changed at a
constant rate. In their experimental work, both maneuvering and non-maneuvering
objects were successfully intercepted.
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In both [10, 11], however, velocity matching was not considered as an issue.
In contrast, this issue was addressed in the Ideal Proportional Navigation Guidance
(IPNG) based interception scheme recently developed in our laboratory [12]. IPNG
is a navigation scheme in which the acceleration command is applied in the direc-
tion normal to the relative velocity between the interceptor and the target, and tries
to turn the relative velocity to the direction of the LOS with utmost effort. It was
originally developed in [18] for the control of missiles tracking airborne targets.

The IPNG-based robotic interception technique was developed to intercept ma-
neuvering and non-maneuvering objects, making full use of the robot’s capabilities.
The proposed approach is a hybrid method, in which a tracking method takes over
control of the robot from the navigation-guidance method at an optimal instant
to bring the end-effector to a pre-grasp situation (matching object’s location and
velocity). In this paper, the implementation of this scheme for the interception of
moving objects in industrial settings is presented.

2. System Overview

Navigation-based techniques nullify the time-rate of change of the LOS angle (i.e.,
the angle that the LOS makes with a reference-frame axis). Subsequently, the in-
terceptor always turns toward an interception point ahead of the target yielding
fast interceptions. However, navigation techniques have been designed to bring
the interceptor into a collision course with the object, whereas a smooth grasp
is necessary in robotic applications. Thus, at a suitable time during the intercept
course, a tracking technique must take over the on-line planning of the robot’s
motion.

The motion-planning algorithms presented in this paper aim at bringing the
end-effector of the robot to a pre-grasp location. Interception is assumed to be
achieved when the relative position and velocity errors between the object and the
end-effector are within user-defined tolerances tolp and tolv, respectively:

|r| < tolp and |ṙ| < tolv, (1)

where r is the relative position vector between the interceptor and the object.
A schematic diagram of the IPNG moving-object interception system devel-

oped in our laboratory is illustrated in Figure 1. The vision module provides real-
time object tracking. The object’s positional data is fed into a prediction module
which provides the motion-planner with one-step-ahead object-state prediction.
The motion-planning module uses the latest information about the robot and object
states to generate the robot’s motion. Finally, the planned motion is executed by
the manipulator.

In the following two sections, the object-trajectory prediction and robot-motion
planning algorithms will be discussed in greater detail, respectively, as a preamble
to the discussion of the implementation issues. Several experiments carried out
in our laboratory will be presented subsequently. In these verification tests, it is
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Figure 1. IPNG-based moving-object-interception system.

assumed that an industrial user would not have access to the robot’s dynamic model
nor to the manipulator arm’s joint controllers.

3. Object-Trajectory Prediction

The purpose of the prediction system within the hybrid IPNG-based intercep-
tion scheme shown in Figure 1 is to provide object tracking and one-step-ahead
state prediction as required by the robot-motion planning module. In our labora-
tory, extensive work has been carried out on the development of a Kalman Filter
(KF)-based object-motion-tracking and -prediction system [13, 14]. This predic-
tion system was also utilized in this work. Other prediction techniques proposed
in the literature for robotic-interception schema include ARMAX filters (e.g., [5])
and α-β-γ filters (e.g., [15]).
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The KF is a computationally-efficient recursive filter that generates an opti-
mal least-squares estimate from a sequence of noisy observations. A new optimal
least-squares estimate is obtained from an additional observation without having
to re-process past data. The KF can also be used to obtain multiple-step-ahead
predictions by propagating the KF extrapolation equation [16].

The 2-dimensional system model for the KF is given as [17]:

xk = �k−1xk−1 + wk−1, wk ∼ N(0,Qk), (2)

where x is the state vector (which, in our case, is the Newtonian state of the moving
object), � is the state transition matrix (which transitions the state vector xk−1 at
time k − 1 to the state vector xk at time k), and w is zero-mean, white Gaussian
noise with covariance Q, representing the dynamic model driving noise vector. The
observation model is given as:

zk = Hkxk + νk, νk ∼ N(0,Rk), (3)

where z is the noisy measurement obtained from the vision system, H is the
observation matrix relating the observed measurement to the object state and ν
is zero-mean, white Gaussian noise with covariance R, denoting the observation
error.

The procedure for the recursive formulation of the KF is carried out in two
stages: the prediction stage (Equations (4) and (5)) and the update stage (Equa-
tions (6)–(8)):

(i) State-estimate extrapolation equation (one-step ahead predictor):

x̂k(−) = �k−1x̂k−1(+). (4)

(ii) Error-covariance extrapolation equation:

Pk(−) = �k−1Pk−1(+)�T
k−1 + Qk−1, (5)

where P denotes the covariance of x. (Equation (5) can be used to obtain a
measure of the accuracy in predicting x at time k based on the measurements
made at time k − 1 and before.)

(iii) Gain-matrix update:

Kk = Pk(−)H T
k

[
HkPk(−)H T

k + Rk
]−1
. (6)

The Kalman gain Kk is used to obtain the optimal estimate of the current
state, x̂k(+), from new measurement data zk and the predicted state x̂k(−).

(iv) Filtering equation:

x̂k(+) = x̂k(−)+ Kk

[
zk − Hkx̂k(−)

]
. (7)

(v) System covariance update:

Pk(+) = [I − KkHk]Pk(−). (8)



6 J. M. BORG ET AL.

4. Robot-Motion Planning – Theory

The IPNG-based interception scheme, as originally was proposed by Mehrandezh
et al. in [12], is briefly outlined below as a preamble to the discussion of its imple-
mentation in industrial settings. Herein, an industrial setting refers to the absence
of a comprehensive dynamic model of the robot as well as lack of the user’s ability
to access the joint controllers for torque-level control. (If the user does have both,
however, it would be preferable to have a dynamic control of the robot. In this case,
the IPNG-based method presented in [12] must be utilized with no approximations
and/or simplifications.)

It should be noted that in the proposed hybrid scheme, interception is achieved
when the position and velocity of the origin of the end-effector’s frame matches the
position and velocity of the object’s frame’s
 origin. This is a pre-grasping stage
interception. Namely, the objective is to bring the robot’s end-effector to the closest
vicinity of the object at the fastest possible time and subsequently allow a tracking
algorithm to carry out the final fine-tuning for grasping.

Herein, and in other interception projects, it is assumed that positional inter-
ception would be carried out primarily by the first three joints (of a six degree-
of-freedom robot) – the slow joints, which could be considered as the bottle-neck
operation in comparison to orientation matching. Namely, during robotic object
interception, position matching consumes significantly more time than would the
concurrent orientation matching process and, thus, an efficient algorithm should
be utilized for this purpose, such as the one proposed in this paper. Orientation
matching, is not the focus of this paper and could be carried out by any other
tracking method proposed in the literature (rather than extending the IPNG-based
technique for orientation matching as well).

The proposed on-line, IPNG-based robot-motion planning scheme comprises
three sub-phases: motion initialization, navigation guidance and tracking (see Fig-
ure 2), which will be individually discussed in the following subsections, respec-
tively. Prior to the discussion of each of these phases, however, the following
subsection will first address the basics of the proposed interception scheme.

4.1. BASICS OF NAVIGATION-GUIDANCE-BASED ROBOTIC INTERCEPTION

The IPNG law was developed by Yuan and Chern [18]. In their proposed scheme,
the acceleration command turns the relative velocity between the interceptor and
the object onto the direction of the LOS with utmost effort. The IPNG acceleration
command, applied in the direction normal to the relative velocity, has a magnitude
proportional to the product of the LOS rate and the relative velocity:

aIPNG = λṙ × θ̇LOS, (9)


 This frame is actually not physically located on the object, but a short distance away from it, in
order to prevent any potential collision between the robot’s end effector and the object to be grasped.
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Figure 2. Interception of a moving object via IPNG.

where λ is the navigation gain and θ̇LOS is the angular velocity of the LOS. θ̇LOS is
expressed as:

θ̇LOS = r × ṙ

|r|2 . (10)

By substituting Equation (12) into Equation (11), the IPNG acceleration command
can be re-defined as

aIPNG = λ

|r|2
{
ṙ × (r × ṙ)

}
. (11)

In [18], it was proven that for IPNG, the capture criterion is λ > 1, no matter what
the initial condition of ṙ and object maneuver are. Moreover, θ̇LOS approaches in-
finity if λ < 2, whereas (for non-maneuvering objects) θ̇LOS approaches zero when
λ > 2.
 Thus, λ should be chosen to be greater than 2, for successful interception.


 The optimal value for λ is computed by optimizing an objective function that takes into account
the energy expended during the interception on top of the interception time. For IPNG, this yields
the range 3 < λ < 5 for optimal performance. However, since in robotic manipulators the expended
energy is not crucial, the range for λ can be relaxed.
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For robotic interception, the acceleration command of the IPNG (in task space,
for the robot’s end effector) can be modified, as will be discussed below, to reflect
the maneuvering superiority of a robotic manipulator over an airborne interceptor,
though, subject to the robot’s dynamic constraints

∣∣Ti∣∣ �
∣∣Timax

∣∣, i = 1, . . . , n, (12)

where Timax is the maximum torque available in the ith actuator.

4.2. ROBOT-MOTION INITIALIZATION

From Equation (11), it can be noted that, if the manipulator is initially at rest, the
initial acceleration command will be in a direction perpendicular to the object’s ve-
locity. This is clearly non-optimal. Thus, a motion initialization scheme is required
prior to the start of the IPNG phase.

The robot motion can be initiated using the maximum permissible acceleration
of the robot towards the interception point. However, since the interception point
is not known a priori, it is proposed herein to initialize the robot in the direction
of the LOS, while taking into account the direction of the object’s velocity eẊT ,
Figure 3:

ed = ker + eẊT
|ker + eẊT |

, (13)

where ed represents the direction of motion initialization, er is a unit vector along
the LOS, eẊT is a unit vector along the object’s velocity and k is a pre-defined
coefficient. (The selection of k > 1 prevents ed from collapsing to zero, when the
direction of the object’s velocity is directly opposite to er .) A more conservative
approach could be the use of a higher value of k (k � 3), to place more emphasis

Figure 3. Direction of robot-motion initialization.
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on initializing the robot towards the current location of the object with less con-
sideration to the direction of motion of the object. This would be a safer strategy,
in case the object maneuvers and changes completely its direction of motion. If
the relative velocity is turned onto the LOS during motion initialization (i.e., if
|θ̇LOS| < threshold), the direction of motion initialization is set as:

ed = er (14)

(i.e., along the LOS), for the remaining duration of robot-motion initialization.
Robot motion-initialization is terminated when either the robot reaches its max-

imum permissible velocity or when a pre-defined time threshold has passed.

4.3. NAVIGATION-GUIDANCE PHASE

IPNG was originally developed for airborne interception, where the interceptor
is normally assumed to be capable of maneuvering in a direction normal to its
current direction of motion. However, the end effector of a robotic manipulator can
be maneuvered in any direction, given that the dynamic constraints of the actuators
are not violated. To reflect this superiority, the acceleration command of the robotic
interceptor should be upgraded while maintaining the torques within a pre-defined
percentage α of their maximum values (for 0 < α < 1). The IPNG acceleration
command is boosted up herein by adding a component in the LOS direction, i.e.,

ac = aIPNG + βer , (15)

where β is a constant that is computed on-line, such that,∣∣Ti∣∣ � α
∣∣Timax

∣∣, i = 1, . . . , n. (16)

It should be noted that, the effect of upgrading the acceleration command along the
LOS is to increase the closing velocity.

Conversely, if the dynamic constraints of the manipulator are violated, the IPNG
acceleration command must be limited. The acceleration command can be limited
by scaling aIPNG, i.e., reducing its magnitude while keeping its original direction,

ac = KaIPNG. (17)

In Equation (17) above, the coefficient K is determined on-line, such that, given
the current robot configuration, none of the actuator limits is exceeded.

4.4. TRACKING PHASE AND PHASE SWITCHING

As discussed above, in the proposed hybrid interception scheme, the IPNG-based
motion-planning brings the robot to the vicinity of the object as fast as possible
(namely, the robot’s end effector is in a collision course with object). A tracking
technique is, thus, necessary to slow the robot and ensure velocity matching at
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the interception point. (A commonly used trajectory-tracking technique for the
control of robotic manipulators is the Computed-Torque (CT) scheme [19]. The
basic concept employed by the CT scheme is to achieve dynamic decoupling of all
joints using nonlinear feedback.)

For time-optimal interception, the tracking method must take over control of
robot-motion planning at an optimal time instant. Therefore, while the robot is
under IPNG control, the decision whether to switch to tracking control or proceed
with IPNG must be considered at each planning instant. In order to do this, the
decision mechanism must be capable of evaluating the overall interception time tint

if a switch would occur at that instant. The overall interception time tint is defined
in this paper as:

tint = tIPNG + ttracking, (18)

where tIPNG and ttracking denote the times during which the robot is under IPNG
control and tracking control, respectively. (The time during which the robot is being
initialized is included in tIPNG.)

Normally, tint is a single minimum curve, Figure 4. The problem at hand, there-
fore, is to determine on-line when the tracking technique should take over the
control of the on-line planning of the robot’s motion for minimum-time inter-
ception. (However, if the curve is not a single-minimum curve, as in every other
optimization case, a switch could happen at a local-optimal point. Though, one can
appreciate that even a local optimal, with some IPNG-phase at the robot’s initial
motion stage, is better than a pure tracking process, where the switch is carried out
at time zero.)

Figure 4. Interception time versus the switching time.
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5. Implementation Using an Industrial Robotic System

The implementation of the proposed IPNG-based interception scheme using an
industrial robotic system would normally face two primary challenges: lack of
availability of the robot’s dynamic model, as well as, inaccessibility to the joint
controllers. In response to these challenges, several modifications to the robot-
motion planning schema are presented in this section. In addition, numerous issues
related to the development of the four software modules, previously introduced in
Section 2, are discussed, Figure 1.

Since our current experimental test-bed includes a GMFanuc S-100 industrial
manipulator with its standard Karel Controller, an NC XY-table used for object
motion and a computer vision system, some references to these are also made
during the discussion of the software modules.

The GMFanuc S-100 is a six degree-of-freedom manipulator, with primarily
three revolute joints to govern end-effector translation, and three revolute joints
mounted at the wrist for orientation. The Karel controller performs the joint-level
control of the manipulator, to which the user does not have access.

5.1. VISION MODULE

The function of the vision module is to provide real-time object tracking. However,
since our emphasis is on visual-tracking in an industrial setting, a semi-structured
environment can be assumed, where certain simple geometric features on the ob-
ject, such as a planar circular marker in our case, rather than the object itself, is
tracked.

In our experiments, the white circular marker is displaced on a darker back-
ground, permitting target localization in the scene by using gray-level thresholding
and centroid computation. The threshold value utilized to convert the gray-scale
images into binary is a priori determined experimentally. The windowing approach
(e.g., [2]) was adopted, whereby only a small rectangular window located at the
current marker location is processed to save time. The window is multiplied in
size if the target is not located within the window. Once the centroid of the target
has been located in the image plane, its coordinates are transformed into the world
coordinate system of the robot. This is achieved using a priori knowledge of the
camera-calibration model [20].

5.2. PREDICTION MODULE

The object’s positional data obtained from the vision module can be efficiently
processed by a recursive KF algorithm. In modeling our system, the noise in the
x and y directions is assumed to be independent and, thus, the x and y states are
decoupled. A first-order Gauss–Markov jerk motion model, as proposed by Singer
[21], is used for each direction. The movement of the object is represented by a
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point mass undergoing random acceleration:

ṗx = vx, ṗy = vy, (19)

v̇x = ax, v̇y = ay, (20)

ȧx = −1

τ
ax +

√
2

τ
σxVx, ȧy = −1

τ
ay +

√
2

τ
σyVy, (21)

where p, v and a are the object’s planar position, velocity and acceleration, respec-
tively. τ is the acceleration decorrelation time (i.e., a measure of how quickly the
object changes its trajectory) and V is Gaussian white noise with variance σ .

5.3. ROBOT-MOTION PLANNING MODULE

The problem of autonomous robot motion has been traditionally divided into two
separate tasks: trajectory planning and robot control, whereby the latter is designed
to reliably follow the trajectory planned by the former, e.g., [22]. The IPNG-based
robot-trajectory planning schema presented in Section 4 may need to be modified
for the effective control of industrial robots. In the absence of the robot’s dynamic
model, the function of our robot-motion planning module is to compute the desired
trajectory setpoints of the end-effector based on the IPNG method. The robot con-
troller would then utilize these setpoints to produce the inputs to the manipulator
so that the end-effector tracks the desired path, Figure 5.

One must recall that the motion-planning algorithms presented herein aim at
bringing the robot to a pre-grasping position. Once the end-effector is at a pre-

Figure 5. Architectural organization of an industrial robot control.
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grasping position, it is assumed that a proximity-sensor-based tracker would take
over control until the object is successfully grasped.

5.3.1. Motion Initialization

The robot’s motion can be initialized as described in Section 4.3. The motion of
the end-effector is defined by a displacement vector d in the direction defined by
Equation (13). The magnitude of d is computed using the maximum permissible
acceleration of the end-effector, Alim.

5.3.2. Navigation-Guidance Phase

In IPNG, the calculation of the acceleration command is carried out using Equa-
tion (11). Herein, the implementation problem at hand is to determine the end-
effector’s future (desired) position as a result of applying the computed IPNG
acceleration command for one motion interval  t . Due to the possible absence
of the robot’s jerk-limit specifications and since  t is normally small, a constant-
acceleration model can be used to determine this next setpoint for the robot (i.e.,
XR at t = tk+1) as follows:

XR(t) = (XR)k + (
ẊR

)
k
(t − tk)+ aIPNG

2
(t − tk)2, t ∈ [tk, tk+1]. (22)

The corresponding robot velocity at t = tk+1 is calculated as
(
ẊR

)
k+1 = (

ẊR

)
k
+ aIPNG t. (23)

As discussed in Section 4, the IPNG acceleration command may be modified
to maximize the utilization of the manipulator’s mobility, without exceeding its
specified limits. In the absence of the robot’s dynamic model, the manipulator’s
(task-space) kinematic constraints are utilized herein: the maximum end-effector
velocity and acceleration limits Vlim and Alim, respectively. These limits must be
satisfied simultaneously.

(i) Upgrading the acceleration command. The IPNG acceleration command is
upgraded, if both its magnitude and the magnitude of robot velocity, (ẊR)k+1, are
less than the specified percentages αA and αV , respectively, of their maximum
values. This is achieved by adding a component in the direction of the LOS, er ,
as described in Equation (15). β is computed such that

∣∣(ẊR

)
k+1

∣∣ � αvVlim and |ac| � αAAlim. (24)

(ii) Limiting the acceleration command. The IPNG acceleration is limited, if
either its magnitude or the magnitude of the end-effector velocity would exceed
their respective limits during the execution of the aIPNG. A sequential process can
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Figure 6. Modifying the aIPNG.

be utilized to achieve this objective: If the acceleration limit is violated, the aIPNG

is limited by simply scaling down its magnitude,

ac = Alim

|aIPNG|aIPNG. (25)

Subsequently, it is checked whether the end-effector velocity at t = tk+1 is expected
to exceed the speed limit Vlim. If the answer is yes, the robot velocity magnitude
is scaled down to Vlim. This amounts to the utilization of an acceleration command
that produces a final velocity at t = tk+1 in the same direction as that which would
be produced by aIPNG; however, with a smaller (permissible) magnitude.

The overall algorithm for modifying the aIPNG for an industrial robot, such as
the GMFanuc S-100, is depicted in Figure 6.

5.3.3. Tracking Phase

In the absence of torque-control capability, object tracking can be achieved using
point-to-point robot-trajectory generation, (e.g., [5]), based on the current state of
the robot and the object’s one-step-ahead predicted state. Task-space quintic poly-
nomials have been used in the past for real-time applications (e.g., [14]). Quintic
polynomials are inherently one-dimensional and, thus, three quintic polynomials
are necessary to describe the robot’s 3D positional trajectory.

In the proposed hybrid interception scheme, tracking is employed only in the
last phase of motion in order to decelerate the robot. Thus, only short-term quin-
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tic polynomial trajectories would be utilized. However, in order to determine the
coefficients of such quintic polynomial trajectories, the motion time is required.
For time-optimal quintic motion trajectory, the motion time must be minimized
subject to the velocity and acceleration limits. Minimum motion time is achieved
when either Vlim orAlim is reached at some point during the planned trajectory. The
problem can, thus, be formulated as:

Given the current state of the robot and the predicted state of the object one
motion-time step ahead, and given the velocity and acceleration limits of the robot,
Vlim and Alim, find the minimum quintic polynomial trajectory time tqp:

tqp = f (Vlim, Alim). (26)

Since the initial and final boundary conditions are not stationary in our case, a
numerical-solution algorithm needs to be used to calculate the tqp [14].

5.3.4. Switching from IPNG to QP Tracking

For time optimal interception, an on-line selection of the optimal instant at which
motion-planning should be switched from IPNG to QP tracking is necessary. A pre-
dictive approach can be used when using a QP Tracker (QPT). However, such an
approach is not suitable for the IPNG-based interception scheme, since IPNG is
targeted for maneuvering objects, whose long-term trajectory cannot be reliably
predicted without a priori information. A near-optimal solution can be adopted in-
stead, in which the current quintic-trajectory motion time tqp is used as the criterion
for switching, Figure 7.

This approach is based on the assumption that IPNG is superior to the tracking
method in bringing the robot towards the object and, thus, tracking is utilized only
in the final portion of the intercept period to decelerate the robot to the current
state of the object. During the IPNG phase of motion-planning, the value of tqp is
computed at each planning instant (using Equation (26)), based on the (current)
end-effector state and (one step-ahead) object state. As the robot closes the dis-
tance to the object, the value tqp would normally decrease in tandem with the (real)
interception time, whose value cannot be accurately estimated. As is the case of the
tint curve, there would be a sudden increase in tqp, if the planned quintic trajectory
overshoots the target trajectory, Figure 7.

The minimum point of the tqp curve (e.g., t2 in Figure 7) can, thus, be utilized to
determine the switching point in an on-line manner. (In order to reduce the effect
of noise, the values of tqp computed on-line may be smoothed using a recursive
exponential smoothing technique [23].)

5.4. EXECUTION MODULE

The robot-motion planner sends trajectory set-points to the execution module,
which is normally hosted on the robot’s dedicated controller (such as the Karel
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Figure 7. Selection of switching instant.

controller for the GMFanuc S-100). The controller would, then, be instructed to
perform joint-interpolated, continuous motion between successive end-effector set-
points. In our case, trajectory setpoints are provided by the motion-planner at the
Karel controller’s request (at the minimum possible ∼220 ms intervals).

6. Experiments

6.1. EXPERIMENTAL SYSTEM CONFIGURATION

The experimental IPNG-QPT-based moving-object interceptor test-bed in our lab-
oratory comprises three primary subsystems, Figure 8.

Within the object-tracking subsystem, tracking is achieved using a (Hitachi
30 Hz) CCD camera (equipped with a Canon 25 mm lens) and a (Matrox 640B)
frame grabber, which acquire 640 × 480 pixel digital images with 256 grey-level
resolution. The host is an Intel-CPU-based PC. The CCD camera is set up in a
fixed-camera configuration. It is mounted at 1.75 m above the plane of motion of
the target, at an angle of approximately 8◦ with the normal to the plane. The current
configuration yields a field of view of approximately 0.47×0.58 m2 on the object’s
motion plane, which corresponds to a resolution of approximately 0.98 mm/pixel
along the x direction of object motion, and 0.9 mm/pixel along the y direction of
motion. On the object-tracking subsystem, the process of acquiring an image and
processing it to generate fresh world coordinates of the object’s centroid utilizes
approximately 66 ms.

The interception-planning subsystem is also an Intel-CPU-based PC. This sub-
system hosts both the target-motion prediction and the robot-motion planning mod-
ules. This enables the predictor module to efficiently provide the planner module
with estimated object motion at the latter’s request. Whenever fresh object data
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Figure 8. Architecture of the experimental test-bed.

becomes available, the object’s trajectory estimates are updated by the KF and the
end-effector setpoints are regenerated using the most recent object-trajectory data.

The execution subsystem is the GMFanuc S-100 robotic system. The GMFanuc
robot is controlled by the Karel controller, which runs its operating system [24].
Programs are written in the Karel high-level language to control the operation
of the robot’s end-effector. The controller allows serial communication with a
host-computer during the execution of a program. This feature is used herein to
instruct the robot to execute real-time trajectories generated by the interception-
planning subsystem. The latter provides the Karel controller with the trajectory set-
points using 9.600 baud serial communication, the fastest rate which the controller
permits.

6.2. EXPERIMENTAL RESULTS

The experimental set-up discussed above was employed to verify the proposed
implementation of the hybrid IPNG-QPT method to intercept moving objects. Due
to the velocity limitation of the NC XY-table (∼35 mm/s maximum), via which
the object is displaced, the robot’s speed limit was set at a much smaller value
than its actual permissible limit. The tolerances of interception (i.e., achievement
of a pre-grasping robot state), tolp and tolv, were set at 10 mm and 10 mm/s,
respectively.
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Figure 9. Interception of an object moving on a linear trajectory.

EXAMPLE 1 (Non-maneuvering object motion). Figure 9 shows the interception
of a non-maneuvering object moving on a planar linear trajectory with a cruising
speed of approximately 30 mm/s. The robot velocity and acceleration limits were
correspondingly set at 70 mm/s and 150 mm/s2. The end-effector was initially at
rest at [200–300 50]T mm.

The IPNG-QPT method yielded an interception time of 9.6 s for a switching
time of 8 s, whereas the QPT method would have yielded 13.1 s (for a switching
time of 0 s). The x, y and z components of the position of the robot’s end-effector
under IPNG-QPT control (as sent by the planner to the robot controller) and of the
object (as received from the object-tracking subsystem) are shown in Figure 10.
Figure 10 also shows the velocity components of the object (estimated via the KF)
and of the end-effector. The variation of the interception time versus the switching
time is shown in Figure 11.

EXAMPLES 2 and 3 (Maneuvering object motion). In the following two examples,
the interception of a maneuvering object is considered. Figure 12 shows the inter-
ception of an object which initially moves along a circular trajectory, then, stops
and moves along a (different) circular trajectory in the opposite direction. For this
example, the IPNG-QPT yielded an interception time of 9.1 s (for a switching time
of 7.6 s), whereas the QPT method would have yielded an interception time of
12.5 s. Figure 13 shows the x, y and z components of the position and velocity of
the robot’s end-effector under IPNG-QPT control and of the object.

Figure 14 shows the variation of the interception time versus the switching
time. It can be noted that switching at 5.5 s would have yielded a (global-optimal)
interception time of 8.5 s, whereas the automatic switching algorithm yielded an
interception time of 9.1 s (at a switching time of 7.6 s, i.e., at the minimum value of
the tqp curve). However, the interception time obtained by the automatic switching
method, though not globally optimal, still represents a significant decrease from
the interception time which the pure QPT method would have yielded (i.e., 12.5 s).
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Figure 10. Position and velocity variation versus time for the end-effector and the target.

Figure 11. Variation of tint and tqp versus switching time.
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Figure 12. Interception of a target moving along a discontinuous circular trajectory.

Figure 13. Position and velocity variation versus time for the end-effector and the object.



MOVING OBJECTS INTERCEPTION IN INDUSTRIAL SETTINGS 21

Figure 14. Variation of tint and tqp versus switching time.

Figure 15. Interception of an object travelling along a stop-and-go trajectory.

Figures 15 and 16 depict the interception of an object travelling along a stop-
and-go trajectory: the object initially moves along a circular path, it then deceler-
ates rapidly to rest, and, after being at rest for 1.5 s, it accelerates rapidly along a
linear path. For this example, the robot’s velocity and acceleration limits were set
at 120 mm/s and 200 mm/s2. Using the IPNG-QPT method, interception occurred
at 7.0 s, whereas the pure QPT method would have yielded an interception time
of 9.1 s.

7. Conclusions

In this paper, the implementation of a navigation-based interception scheme for
moving-object interception has been presented. The interception scheme is a hy-
brid method, combining a navigation-based technique with a conventional tracking
method. An industrial robotic system has been utilized in the implementation. The
experimental results confirm that the hybrid interception scheme could yield faster
interception times than would a pure (visual-servoing type) tracking method.
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Figure 16. Position and velocity variation versus time for the end-effector and the object.
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