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Rendezvous-Guidance Trajectory Planning for Robotic
Dynamic Obstacle Avoidance and Interception

Faraz Kunwar and Beno Benhabib

Abstract—This correspondence presents a novel online trajectory-
planning method for the autonomous robotic interception of moving
targets in the presence of dynamic obstacles, i.e., position and velocity
matching (also referred to as rendezvous). The proposed time-optimal
interception method is a hybrid algorithm that augments a novel
rendezvous-guidance (RG) technique with the velocity-obstacle approach,
for obstacle avoidance, first reported by Fiorini and Shiller. The obstacle-
avoidance algorithm itself could not be used in its original form and had
to be modified to ensure that the online planned path deviates minimally
from the one generated by the RG algorithm. Extensive simulation and
experimental analyses, some of which are reported in this correspondence,
have clearly demonstrated the tangible time efficiency of the proposed
interception method.

Index Terms—Online trajectory planning, rendezvous guidance (RG),
target interception.

I. INTRODUCTION

Robotic environments have, typically, time-varying topologies, with
several objects moving with respect to each other. A common thread
to such environments is that the topology of the environment is often
uncontrollable and, therefore, requires online planning and execution
of the robotic-vehicle trajectories, i.e., a need for autonomous routing
decisions. For example, current automated guided vehicles’ (AGVs)
autonomy, as well as their efficiency, could be tangibly increased, if
they were capable of making online routing decisions to avoid mobile
or static obstacles [1]. In this context, the focus of this correspondence
is on the two autonomy aspects of the robotic vehicles: 1) guidance-
based time-optimal rendezvous with a moving target (matching posi-
tion and velocity) and 2) obstacle avoidance.

The problem of robotic-vehicle interception in the obstacle-
cluttered environments, using a rendezvous-guidance (RG) method
augmented with a modified exact cell decomposition (MECD) meth-
od for the time-optimal rendezvous, was first addressed in [2]. This
method, although computationally efficient, has several shortcomings,
including lack of time optimality. In order to overcome the short-
comings of the proposed original method and achieve an improved
rendezvous with the dynamic targets, this correspondence augments
the RG method with the velocity-obstacle (VO) approach [3].

A. Guidance-Based Interception

Missile-guidance techniques have been classified into five main
categories [4], [5]: line-of-sight (LOS) guidance; pure pursuit (PP);
proportional navigation guidance (PNG); optimal guidance (OG); and
other guidance methods, including the use of the differential game
theory. The missile-guidance laws assume that the future trajectory
of the target is completely defined by either an analytical or a proba-
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bilistic model [6]–[8]. However, the problem of the velocity matching
introduced in this correspondence has not been an issue in missile-
guidance applications.

The PNG law uses the homing triangle for computing the accelera-
tion of an interceptor pursuing an evading target. The homing triangle
is defined by the interceptor, the target, and the point of interception.
This control law makes the interceptor’s acceleration normal to its
path and proportional to the rate of change of the LOS vector to the
target. Due to its low computational requirements, the simplicity of an
onboard implementation, and the time-optimality characteristics, the
PNG has been the most widely used guidance technique [9].

The need for velocity matching has resulted in a new class of
guidance methods, commonly referred to as RG methods. A PNG-
based RG method for the docking problem of two space vehicles was
proposed in [10]. In [11], the use of an exponential-type guidance was
suggested for asteroid rendezvous. The problem of the rendezvous,
with an object capable of performing evasive maneuvers in order to
avoid the rendezvous, was addressed in [12].

The utilization of a guidance-based technique in robot motion plan-
ning, with the purpose of improving upon the interception time achiev-
able by visual-servoing techniques, was first reported in [13]–[16].
Although these works showed that guidance-based methods could
yield shorter interception times compared to other available tech-
niques, all were limited to environments with no obstacles. This cor-
respondence proposes a new guidance-based method that overcomes
this limitation by enabling it to optimally deal with the obstacles.

B. Obstacle Avoidance

Motion-planning problems for mobile robots have been classified
as static or dynamic. In the former, all of the obstacle information
is known to the planner prior to planning. In the latter case, the
information about the environment becomes known to the planner
only during runtime and often during the execution of a partially
constructed plan. The static methods for obstacle avoidance, like the
potential-field (PF) techniques, roadmaps, and CD methods [17]–[20],
calculate the desired motion direction and steering commands in two
separate steps. In the first step, the obstacle-avoidance method provides
the intermediate destination points that connect a collision-free path
from the robot to the target. In the second step, the acceleration
commands are derived for the path generated for the motion of the
robot. Such a methodology would not be acceptable for a dynamic en-
vironment with fast moving obstacles, where the uncertainty about the
environment prevents the computation of a solution that is guaranteed
to succeed.

The curvature-velocity (CV) [21] and the dynamic window (DW)
[22] methods are based on the steer-angle-field approach [23]. The CV
method chooses a location in the translational- and rotational-velocity
space that satisfies the constraints placed on the robot and maximizes
an objective function [24]. The lane-curvature method (LCM) [25]
improves upon the CV method by using a directional-lane method.
The DW method considers the kinematic and dynamic constraints of a
mobile robot [26]. The kinematic constraints are taken into account
by directly searching the velocity space of the robot. The search
space is reduced to a DW representing the velocities achievable by
the robot in a given interval of time. In spite of the good results for
obstacle avoidance at high velocities achieved by both the CV and
DW methods, the local-minima problem persists. In order to overcome
this shortcoming, the DW method was integrated with a gross-motion
planner in [27] and extended to use a map in conjunction with the
sensory information in [28] to generate the collision-free motions.
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However, these approaches require a priori information about the
environment.

The algorithm proposed in this correspondence uses the VO ap-
proach first proposed in [3]. This method, like the CV and DW
methods, considers the kinematic and dynamic constraints of the robot
in computing the acceleration commands. However, the VO method
determines the potential collisions and computes the collision-free
paths for the robots moving in the dynamic environments. The VO
represents the robot velocities that would cause a collision with an
obstacle in some future time. An avoidance maneuver is computed by
selecting the velocities that are outside the VO. In order to ensure that
the maneuver is feasible, the dynamic constraints are mapped into the
velocity space. The VO method was extended in [29] to include objects
moving along the nonlinear trajectories. A comparison of the DW and
the extended VO approaches, for obstacle avoidance, was reported
in [30], which showed that the VO approach clearly performs more
favorably than would the DW approach.

II. PROPOSED HYBRID INTERCEPTION METHOD

A schematic diagram of the proposed implementation of the hybrid
RG–VO method is shown in Fig. 1. A vision module first obtains
the positional and velocity (p, v) state vectors of all the objects in
the workspace, namely, the robot’s (pR, vR), the target’s (pT, vT),
and the obstacles’ (pO1, vO1), (pO2, vO2), etc., and passes this
information to the RG and VO algorithms. Based on this information,
the proposed hybrid path planner evaluates whether an obstacle is
within the time horizon th, i.e., whether the time-to-impact between
an obstacle and the target is less than a threshold period. If no
obstacle is within the time horizon, then, the position and velocity
information are passed on to the RG method, which in turn selects
the maximum possible closing velocity, vRG, required to rendezvous
with the target for the next sampling instant ∆t. Finally, a lateral
acceleration command aRG to achieve the desired velocity in the
interval (ti + ∆t) is computed and passed on to the robot. If, on
the other hand, it is determined that an obstacle is within the time
horizon th, the positional and velocity information are passed on to
the VO method. The VO method first constructs a VO cone for each
obstacle in the time horizon th. This cone represents a set of relative
colliding velocities between the robot and the obstacle. By selecting a
velocity vVO that is not within the VO set, the obstacle avoidance can
be ensured for the next sampling period. Finally, a lateral acceleration
command aVO to achieve the desired velocity in the interval (ti + ∆t)
is computed.

A. Interception via RG

Let us define a LOS as the relative position vector r connecting
the interceptor/robot to the target, as shown in Fig. 2. The parallel-
navigation rule states that the relative velocity ṙ between the robot and
the target should remain parallel to r at all times [4]. If this rule holds
throughout the motion of the interceptor, the distance between the in-
terceptor and the target would decrease until they collide. Furthermore,
if the target moves with a constant velocity, the parallel navigation
results in a global time-optimal interception.

The parallel-navigation law is expressed by the following two
relationships:

r × ṙ =0 (1)

r · ṙ < 0. (2)

Equation (1) guarantees that the LOS and the relative velocity remain
parallel, while (2) ensures that the interceptor is not receding from the

Fig. 1. Schematic of the proposed RG–VO method.

Fig. 2. Construction of RL.

target. The above equations can be solved for ṙ in a parametric form
to yield

ṙ = −α r (3)

where α is a positive real number. The instantaneous relative velocity,
also referred to as the “closing velocity,” can then be written in terms
of the robot and target velocities, denoted by vR and vT, respectively,
as follows:

ṙ = vT − vR. (4)

Substituting (3) into (4) and solving for the robot velocity yields

vR = vT + α r. (5)

The vectors r and vT are determined using the data received from a
vision module, based on the instantaneous positions of the robot and
the target. Substituting these two known vectors into (5) would result
in a locus for the robot’s velocity vectors vR, all lying on a semiline
parameterized by α. This semiline, referred to as the rendezvous line
(RL), is depicted in Fig. 2. The center of the coordinate frame is
located on the robot to show the instantaneous relative position of the
target. The endpoints of the velocity vectors show the position of
the target or the robot after one sampling period, should they adopt
the corresponding velocities. If the robot continually adopts a velocity
command that falls on the instantaneous RL, the direction of the LOS
would remain constant, and the positional matching between the robot
and the maneuvering target is guaranteed.
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In order to rendezvous with a target, the velocity of the robot/
interceptor must also match the velocity of the maneuvering target at
the time of the interception. The velocity commands generated based
on (5) guarantee the position matching. Thus, the next task is to find
an α value such that velocity matching is also assured.

Let us assume that, from the current instant until interception, the
robot is guided by the velocity commands that lie on the instantaneous
RL. This assumption allows us to consider the interception problem
only in the direction of the LOS. Let us, furthermore, consider that the
acceleration capability of the robot in this direction is given by A. This
acceleration would be used to bring the closing velocity down to zero.
Assuming a constant acceleration for the rest of the robot motion, the
simultaneous reduction of the velocity and position differences in the
direction of the LOS for interception may then be written as{

ṙrend
max − Atr = 0

r − ṙrend
max tr + 1/2At2r = 0

(6)

where ṙrend
max is the magnitude of the maximum allowable closing/

rendezvous velocity (hence, the superscript rend) and tr is the time
remaining to intercept the target from the current instant. The max-
imum instantaneous allowable closing velocity is then obtained by
solving (6)

ṙrend
max =

√
2rA. (7)

The maximum closing velocity, as imposed by the frequency of
the velocity-command generation by the trajectory planner for a fast
asymptotic interception, is given by

ṙcr
max = r/n∆t. (8)

The value of n is determined experimentally. The final allowable
closing-velocity component of the velocity command is then obtained
by considering (7) and (8) simultaneously

vrel
max = min

〈
ṙrend

max , ṙcr
max

〉
. (9)

The end points of all the velocity-command vectors on the RL
that have a closing-velocity component smaller than vrel

max constitute
a line segment extending from vR = vT to vR = vR,max(= vT +
vrel

max(r/‖r‖)). This set of points is referred to herein as the ren-
dezvous set (RS) [Fig. 3(a)]. The velocity represented by vrel

max

[Fig. 3(a)] may not be achievable by the robot within the sampling
period ∆t. Therefore, we define a feasible velocity region (FVR)
representing all the velocities achievable by the robot within ∆t, taking
into account the kinematic and dynamic constraints on the robot [3].
This region is depicted by the polygon in Fig. 3(b). The velocity
selected by the robot for the sampling interval ∆t is the component of
the RS within the FVR with the maximum value, which is represented
by vR(ti + ∆t) in Fig. 3(b). It is, thus, concluded that, if the robot
adopts the velocity commands from within the RS with the largest al-
lowable closing-velocity component, then, a time-efficient interception
can be achieved.

B. Obstacle Avoidance via VO Method

Herein, for simplicity, we model the robot and the obstacles as
circles, thus, considering a planar problem with no rotations. This is a
reasonable assumption since the general polygons can be represented
by a number of circles.

1) Planar VO: Let us consider two circular objects, a robot (R) and
an obstacle (O), at time ti, with velocities vR and vO , respectively
[Fig. 4(a)]. In order to compute the VO, we first map the obstacle
model into the configuration space of the robot by reducing the robot

Fig. 3. Generation of the rendezvous command.

model to a point R̂ and enlarging the obstacle by the radius of the
robot model to Ô. The state of the moving object is represented by its
position and a velocity vector attached to its center. Next, the set of
the colliding relative velocities between R̂ and Ô, called the collision
cone, CCRO , is defined as

CCRO = {vR,O|λR,O ∩ Ô 	= 0} (10)

where vRO is the relative velocity of R̂ with respect to Ô, vR,O =
ṽR − vO , and λR,O is the line along the direction of vRO . This cone is
the light gray sector with the apex in R̂, bounded by the two tangents
λf and λr from R̂ to Ô [Fig. 4(b)]. Any relative velocity that lies
between the two tangents to Ô, λf and λr , will cause a collision
between R and O. Therefore, any relative velocity outside CCRO is
guaranteed to be collision-free, provided that the obstacle Ô maintains
its current speed. Furthermore, selecting a velocity in front of λf

will cause a front-avoidance maneuver, allowing the robot to pass in
front of the obstacle, whereas selecting a velocity behind λr would
cause a rear-avoidance maneuver, allowing the robot to pass behind
the obstacle.

Each collision cone is specific to a particular pair of robot and
obstacle. To consider the multiple obstacles, we must establish an
equivalent condition to the absolute velocities of R. This is done
simply by adding the velocity of O vO to each velocity in CCRO and
forming the VO

VOO = CCRO ⊕ vO (11)

where ⊕ is the Minkowski-vector sum operator, as shown in Fig. 4(b)
by the dark gray sector. The VO partitions the absolute velocities of
R into the avoiding and colliding velocities. Selecting vR outside of
VO would avoid collision with O. Velocities on the boundaries of VO
would result in R grazing O or

R(ti) ∩ O(ti) = 0, if vR(ti) 	∈ VOO(ti). (12)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 6, DECEMBER 2006 1435

Fig. 4. VO method for obstacle avoidance. (a) Two colliding objects.
(b) VOO . (c) FAV.

In order to avoid multiple obstacles, we consider the union of the
individual VOs of (10)

VO = ∪m
i=1VOOi

(13)

where m is the number of obstacles. The avoidance velocities, then,
consist of those velocities vR that are outside all the VOs.

2) Avoidance Maneuver: An avoidance maneuver consists of a
one-step change in the velocity to avoid a future collision within a
given time horizon. The new velocity must be achievable by the robot.
Thus, the set of the avoidance velocities are also limited by the FVR
defined above. It is represented by the polygon shown in Fig. 4(c).

The set of feasible velocities FV(ti + ∆t) over the sampling period
∆t is, thus, defined as

FV(ti + ∆t) = {v|v = vR(ti) ⊕ ∆t • FA(ti)} (14)

where FA(ti) represents the set of feasible accelerations of the robot
at time ti. This defines the FVR, as shown by the polygon in Fig. 4(c).
It is computed by scaling FA(ti) by ∆t and adding it to the current
velocity of the robot vR, as shown schematically in Fig. 5.

The set of feasible avoidance velocities (FAV) is defined as the
difference between the feasible velocities and the VO

FAV(ti + ∆t) = FV(ti + ∆t)ΘVO(ti) (15)

where Θ denotes the operation of the set difference. A maneuver
avoiding obstacle O can then be computed by selecting any velocity
in the FAV. Fig. 4(c) shows schematically the set FAV, consisting of

Fig. 5. Feasible accelerations.

two disjoint closed subsets. For the multiple obstacles, the FAV may
consist of the multiple disjoint subsets. It is also possible to choose the
type of avoidance maneuver by selecting which side of the obstacle
the mobile robot will pass. The most feasible velocity for the next
sampling instant is selected by performing a heuristic search.

3) Heuristic Search Strategies: Heuristics are designed to satisfy a
prioritized series of goals. In our case, avoiding obstacles is the pri-
mary goal of the robot, and reaching the desired target by minimizing
a performance index and selecting a desired trajectory structure are the
secondary goals. The hierarchical fulfillment of these goals is intrinsic
to the VO approach, since choosing the velocities within the FAV at
each instant guarantees that all obstacles are avoided, provided that
a safe avoidance velocity exists within the FAV. Then, depending on
the appropriate selection of avoidance velocity, some of the secondary
goals can also be satisfied.

It is evident that not all velocities within the FAV are candidates for
the avoidance maneuvers, since they may move the robot away from its
target, or they may produce a very slow trajectory. Furthermore, other
considerations may affect the choice of avoidance velocity, such as the
type of obstacle that is to be avoided, the speed of the obstacle, the size
of the obstacle, etc. These considerations can be used to approximately
classify the elements in the environment into two broad categories:
high-risk and low-risk obstacles. The natural heuristic strategy used in
the presence of high-risk obstacles is to let them pass without crossing
their path. This heuristic maps into a rear-avoidance maneuver. The
avoidance of a low-risk obstacle can be achieved with a more risky
maneuver such as a front-avoidance maneuver. It is important to note
that there is no guarantee that any objective is achievable at any time.
The purpose of the heuristic search is to find an acceptable local
solution if one exists.

Based from above, the following three basic heuristics were de-
fined in [4].

1) Select the highest safe velocity along the line to the goal
[Fig. 6(a)] so that the trajectory takes the robot toward its target.
This strategy is denoted by to goal (TG).

2) Select the maximum safe velocity within some specified angle θ,
from the line to the goal [Fig. 6(b)], so that the robot moves fast
even if this implies not aiming directly at the goal. This second
strategy is called the maximum velocity (MV).

3) Select the velocity that avoids the obstacles according to their
perceived risk (high or low) [Fig. 6(c)]. Here, the obstacle is
perceived to be of high risk; therefore, the chosen velocity is
selected to be the largest among the rear-avoidance velocities.
This strategy is called the structure (ST).

III. IMPLEMENTATION

The procedure in generating the desired velocity vR (ti + ∆t) for
the next sampling interval, in which the acceleration command is
based, is discussed herein. Fig. 7 represents a general case, where a
robot is intercepting a target in the presence of two moving obstacles.
Furthermore, it is assumed that both obstacles are within th; thus,
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Fig. 6. Heuristic strategies. (a) TG. (b) MV. (c) ST.

Fig. 7. Trajectory planning by combining the RG with the VOs.

avoidance of both obstacles is necessary. Here, vR (ti) represents the
velocity of the robot at time instant ti; vO1 is the velocity of the first
obstacle; and vO2 is the velocity of the second obstacle at the same
time instant.

First, the algorithm constructs a combined VO for all the obstacles
within th; this is represented by the shaded region in Fig. 7. This is
done simply by subtracting the areas of the VOs of both the obstacles,
VOO1 and VOO2, which lie within the FVR from the area of the FVR.
The FV set of the robot for the next sampling interval vR (ti + ∆t),
to avoid the obstacle and rendezvous with the target in any situation,
is given by (16). At any instant, only one velocity is selected from this
set to avoid all the obstacles at that particular instant. The velocities
represented in (16) are also shown in Fig. 7, where

vR(ti + ∆t) =
{
v|v ∈

[
vrel

max, v1, v2, vIR, vIP1−IP5

]}
. (16)

In (16), vrel
max represents the maximum allowable closing-velocity

component, computed by the RG algorithm required for rendezvous;
v1 and v2 represent the velocities followed by the robot based purely
on the RG algorithm without any obstacle-avoidance requirements;
and vIR represents the intersection point of the VO with the RL. It is
to be noted that this point only exists if a portion of the RL is outside
the VO: it is the MV within the FVR, which satisfies the RG and VO
methods when obstacle avoidance is necessary. The points vIP1−vIP5

represent the intersection points of the combined VO with the FVR.
These represent the maximum and minimum front- and rear-avoidance
velocities, respectively, which may be selected to ensure that the robot
avoids the obstacle. The number of these intersection points (1−n) at
any instant depends on the number and orientation of the obstacles
present in the workspace and also within the th. For a single obstacle,
the maximum number of the intersection points is four.

Out of all the velocities given by (16) and detailed above, only one
is selected for the execution in the next sampling period (ti + ∆t). In

TABLE I
GENERATION OF THE ROBOT VELOCITY COMMAND

order to determine which velocity is selected, a sequence of checks is
performed (Table I).

Based on the velocity obtained from Table I, the algorithm computes
the final acceleration command that is sent to the robot controller, as
expressed below

aR(ti + ∆t)

=

{
vRG − vR(ti)/∆t obstacle avoidance not required
vV O − vR(ti)/∆t obstacle avoidance required.

(17)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 6, DECEMBER 2006 1437

Fig. 8. Flowchart of the RG–VO algorithm.

TABLE II
INTERCEPTION DATA SIMULATIONS

A flowchart detailing the steps carried out by the robot to the
rendezvous with the target is given in Fig. 8.

IV. SIMULATIONS

A number of simulations were carried out for the rendezvous using
the proposed hybrid RG–VO algorithm. A comparison of this method
was also carried out with the RG–MECD method presented in [2].
The MV and the lateral acceleration of the robot were limited to
300 mm/s and 3000 mm/s2, respectively, in all the examples. The robot
is assumed to have no axial acceleration and is initially moving at
300 mm/s in the positive X direction. The criterion for a successful
interception was set as < 10-mm relative distance in both the X and
Y directions and a relative velocity of < 10 mm/s.

The results of two of the simulations comparing the RG–MECD
method with RG–VO method are given in Table II and Fig. 9. Fig. 9(a)
shows a simulation carried out with one obstacle in motion and with a
maneuvering target, whereas Fig. 9(b) shows a simulation in which
both the obstacles as well as the target are moving. A simulation
showing a complex scenario with a large number of moving objects
is shown in Fig. 9(c), using only the RG–VO method. A time sequence
of the objects in the environment, to show the time evolution of the

Fig. 9. Simulations. (a) Simulation with one static obstacle. (b) Simulation
with two dynamic obstacles. (c) Simulations in a multiple dynamic obstacles
complex environment. (d) Time evolution of the avoidance maneuver.

avoidance maneuver, is shown in Fig. 9(d). Fig. 9(d) depicts the same
scenario, as shown in Fig. 9(c), but, in this case, the position of each
object at the discrete time instants is shown.

In Fig. 9(d), the dark circles represent the target; the lighter circles
represent the interceptor; and the squares represent the obstacles. Each
object has a number associated with it ranging from instants 1 to
6, representing the location of the object at that particular point in
time. Thus, the initial positions of the objects are represented by the
number 1 and the final positions by the number 6. The interceptor
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TABLE III
SUMMARY OF THE SIMULATION DATA

Fig. 10. Physical layout of the setup.

starts by accelerating to avoid the spiraling Obstacle 1 and passes
in front of the obstacle (instant 2) and continues rendezvous up to
instant 3. Here, the algorithm has to safely negotiate the three obstacles
simultaneously: Obstacle 2, which is beneath the interceptor moving
in a circular trajectory, Obstacle 3, which is directly in front of the
robot moving across the interceptor’s path, and Obstacle 4, which is
moving straight down. The robot slows down sufficiently to pass in
front of Obstacle 2, while allowing Obstacle 3 to pass it. In order
to successfully achieve this, the trajectory of the interceptor has to
be directed away from the target. From instant 4 to instant 5 the
interceptor has to slow down sufficiently to allow Obstacle 4 to pass in
front of it, but still avoid Obstacle 2, coming up from behind. After a
successful navigation, the interceptor modifies its trajectory for a tail
on the rendezvous with the target, which is achieved from instant 5 to
instant 6.

In addition to the simulations described above, the proposed method
was tested by varying the trajectories and velocities of the target and
the obstacles (Table III).

The simulations showed that, when the RG is augmented with the
VO, the path of the robot is more time efficient and the motion is
mostly linear with lesser demands on the accelerations. The simu-
lations also showed the ability of the algorithm to determine when
can time optimality be achieved by accelerating to avoid the obstacle
or slowing down in order to maintain the RG time-optimal velocity
profile.

V. EXPERIMENTS

The physical layout of the experimental setup is depicted in Fig. 10,
and the hardware specifications are given in Table IV. The software
for the experiments, running on a Pentium IV 1.6-GHz processor
PC, consisted of three modules: image acquisition and processing,
trajectory planning, and communication modules. An analog charge-
coupled device camera captured the image of the workspace and
transferred it to the frame grabber in the PC. The vision algorithm
then extracted the positional information of all the objects in the
workspace. This information was sent to the trajectory planner, where
an acceleration command is calculated for the robot/interceptor. The

TABLE IV
EXPERIMENTAL HARDWARE

TABLE V
CALCULATION OF THE 95% CONFIDENCE INTERVAL

TABLE VI
INTERCEPTION DATA EXPERIMENTS

communication module broadcasted these data to the mobile robots via
an RF module connected to the PC through a serial port. The details
of the vision system, communication system, and mobile robots are
included in the Appendix.

A. Experimental Results

The experiments were carried out with the aim to intercept a moving
target without trying to rendezvous with it (for equipment safety
reasons). Here, again, a comparison is shown with the RG–MECD
method. A student t-test analysis of the comparative experimental
data was carried out for the 36 experiments performed with the
various different initial conditions and trajectories of the target and the
obstacles. The results of the analysis are summarized in Table V. This
table shows that the mean improvement in the interception time was
11.79. One can conclude with 95% confidence that an improvement
of 13.36%–10.21% in the interception time can be obtained by using
the RG–VO, when compared to the RG–MECD method.

In the first experiment presented here, the object is moving on
a straight line, and the obstacles are static; whereas in the second
experiment, an obstacle is moving across the path of the robot, and
the target is static. Each experiment was repeated three times under
identical conditions. The results of the experiments are shown in
Table VI and Figs. 11 and 12. The experimental results confirm the
ability of our algorithm to maintain a smooth trajectory compared to
the one obtained by the RG–MECD for the experiments under the
same conditions.

VI. CONCLUSION

A novel RG method is proposed for autonomous robotic intercep-
tion of moving targets in a dynamic environment with static and/or
moving obstacles. The focus has been on two autonomy aspects:
1) time-optimal rendezvous with a moving target and 2) obstacle
avoidance. The proposed algorithm uses the RG method to obtain the
velocity for the next sampling period, as long as no obstacle avoidance
is required. However, in the presence of obstacles, the algorithm uses
the VO method, which defines a set of colliding velocities between the
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Fig. 11. Experiments with the static obstacles. (a) RG–MECD and
(b) RG–VO.

robot and the obstacles. By employing a velocity and heading outside
the VO, a collision-free trajectory to the target can be ensured.

Furthermore, in our algorithm, instead of using a heuristic search
strategy proposed in the original VO method, the search for a feasible
velocity for the next sampling interval is reduced to the velocities that
are as close as possible to the maximum closing-velocity component
obtained from the RG method. For this purpose, a sequence of checks
was designed to obtain a feasible velocity for the next sampling period,
to keep the deviation necessary for obstacle avoidance minimal from
the path obtained by the RG law. The simulations and the experiments
have verified the system to be efficient and robust with regard to the
interception of the moving targets with various different interception
parameters and situations. A drawback of the algorithm is that, in its
current implementation, it requires the objects in the environment to
remain visible at all times in order to obtain their relative positions.

APPENDIX

DETAILS OF THE EXPERIMENTAL SETUP

Vision System

The robot, the obstacles, and the target have markers that are
color coded for identification. The raw image containing the three
channels of data, indicating the intensities of the red (R), green (G),
and blue (B) colors in each pixel, is transformed into the Y CbCr
(luminance, chrominance-blue, and chrominance-red) color space. The
transformation is performed by the following equations [31]:

Y =0.299R + 0.587G + 0.114B (A1)

Cb =(B − Y )/1.772 (A2)

Cr =(R − Y )/1.402 (A3)

Fig. 12. Experiments with the mobile obstacle. (a) RG–MECD and
(b) RG–VO.

where Y has a range of [0,255] and Cb and Cr have a range of
[−127.5,127.5].

When an image is examined, the weighted Euclidean distances,
in the Y CbCr color space, between each pixel in the image and the
predefined color set are calculated using

D=
√

0.15(Yp − Yc)2+ 0.425(Cbp − Cbc)2+ 0.425(Crp − Crc)2

(A4)

where D is the weighted Euclidean distance, Yp, Cbp, and Crp, are the
measured Y CbCr values of the pixel, and Yc, Cbc, and Crc are the val-
ues of the predefined color set. It was noted that the pixels on the iden-
tification marker did not vary more than 18.0 in the weighted Euclidean
distance from the defined Y CbCr value. This value was, therefore, set
as the threshold distance: if a pixel is within this threshold distance of a
certain color in the predefined color set, then, it is considered to be that
color. After the image has gone through the thresholding operation,
the positions of the mobile robot, the obstacles, and the target are
determined.

A search is performed to find the markers on all the objects. To
achieve the smallest sampling rate, the dimension of the smallest
marker is used, denoted here as l pixels. Starting from the pixel
location (0,0), every 0.5l pixels are sampled along the X and Y
directions. If the sampled pixel has the color of the predefined set, a
search frame is placed over that pixel. The size of the search frame is
twice the diameter of the marker. If the number of pixels of a certain
color in the search frame exceeds a predetermined threshold, then, a
marker of that color is considered to be located in that search frame.
The centroid of that color blob is then calculated to subpixel accuracy
using the centroid method [32] (Fig. 13).

With all the markers located, object identification can be performed.
The vision program first searches for the blue markers. Once a blue
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Fig. 13. Color marker search.

marker is found, the algorithm looks for a white marker within a
distance of the radius of a robot. If a corresponding white marker is
located, then a robot has been successfully identified. The bearing of
the object is indicated by an imaginary line drawn between the center
of the blue circle to the centroid of the white pattern. The algorithm
takes approximately 150 ms to execute (i.e., a frame rate of 6.5 ft/s).

Communication System

The communication system uses wireless transceivers to provide an
asynchronous half-duplex link between the host PC and the mobile
robots [33]. The transmission baud rate operates at 19.2 kb/s. Two
carrier frequencies are available for this system: 866 and 916 MHz.
An independent wireless transceiver module is responsible for the
communication on the host PC. It is connected to the PC through the
RS-232 serial port. The MAX232N chip converts the RS-232 signals
into TTL signals, which can then be transmitted by the transceivers.
The transceiver modules include the TLP916 and RLP916 for trans-
mitting and receiving, respectively.

Mobile Robots

Two differential-drive mobile robots were used in the implemen-
tation of this correspondence: an interceptor and a moving obstacle
or target. The mobile robots are powered by two Faulhaber 2842-
012C DC motors, rated at 12 V and provide 6.50 W of output power.
Maximum torque is rated at 6.88 oz · in. A Faulhaber 38/3 spur gear-
head provides a 5.42 : 1 reduction ratio, to provide more torque to the
wheels. This gear-head is in turn connected to the wheels through
a 1 : 1 ratio gear assembly. Two ball casters provide the balancing
support to the robot. The top plate is marked with a colored pattern.

Robot Controller

The robot controllers utilize the Quanser QIC processor core. A
baseboard was designed to house this processing unit and other auxil-
iary modules such as the motor drivers and the wireless transceivers.
The controllers are powered by two 7.2-V Canon BP-511 Li-ion
batteries. The QIC processor core uses a microchip PIC16F877 mi-
croprocessor and has a built-in RS-232 interface. It has 8 K of
flash program memory, 10-bit analog-to-digital converter, and a built-
in pulsewidth modulation (PWM) controller. The processor is pro-
grammed using an embedded C++ language. The baseboard consists
of three modules: the transceiver unit, power unit, and motor drivers.
The voltage regulators provide a steady 12 and 5 V for the transceiver

unit and the motor drivers. The PWM-driven motor drivers used were
Allegro Microsystems 3959 series, capable of delivering up to 3.0 A to
each motor.

REFERENCES

[1] A. Yilmaz, O. Sami, and R. P. Davis, “Flexible manufacturing sys-
tems: Characteristics and assessment,” Eng. Manage. Int., vol. 4, no. 3,
pp. 209–212, Sep. 1987.

[2] F. Kunwar, F. Wong, R. Ben Mrad, and B. Benhabib, “Rendezvous guid-
ance for the autonomous interception of moving objects in cluttered en-
vironments,” in Proc. IEEE Conf. Robot. and Autom., Barcelona, Spain,
Apr. 2005, pp. 3787–3792.

[3] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 711–727,
1998.

[4] N. A. Shneydor, “Parallel navigation,” in Missile Guidance and Pursuit.
Chichester, U.K.: Horwood, 1998, pp. 77–99.

[5] H. L. Pastrick, S. M. Seltzer, and M. E. Warren, “Guidance laws for short-
range tactical missiles,” J. Guid., Control Dyn., vol. 4, no. 2, pp. 98–108,
1981.

[6] G. M. Anderson, “Comparison of optimal control and differential game
intercept missile guidance law,” AIAA J. Guid. Control, vol. 4, no. 2,
pp. 109–115, Mar. 1981.

[7] D. Ghose, “True proportional navigation with manoeuvring target,” IEEE
Trans. Aerosp. Electron. Syst., vol. 1, no. 30, pp. 229–237, Jan. 1994.

[8] T. J. Speyer, K. Kim, and M. Tahk, “Passive homing missile guidance
law based on new target maneuver models,” J. Guid., vol. 1, no. 13,
pp. 803–812, Sep. 1990.

[9] C. D. Yang and C. C. Yang, “A unified approach to proportional naviga-
tion,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 2, pp. 557–567,
Apr. 1997.

[10] P. J. Yuan and S. C. Hsu, “Rendezvous guidance with proportional navi-
gation,” J. Guid., Control, Dyn., vol. 17, no. 2, pp. 409–411, 1993.

[11] M. Guelman, “Guidance for asteroid rendezvous,” J. Guid., Control, Dyn.,
vol. 14, no. 5, pp. 1080–1083, 1990.

[12] D. L. Jensen, “Kinematics of rendezvous manoeuvres,” J. Guid., vol. 7,
no. 3, pp. 307–314, 1984.

[13] H. R. Piccardo and G. Hondered, “A new approach to on-line path
planning and generation for robots in non-static environment,” J. Robot.
Auton. Syst., vol. 8, no. 3, pp. 187–201, 1991.

[14] M. Mehrandezh, M. N. Sela, R. G. Fenton, and B. Benhabib, “Robotic
interception of moving objects using an augmented ideal proportional
navigation guidance technique,” IEEE Trans. Syst., Man, Cybern., vol. 30,
no. 3, pp. 238–250, May 2000.

[15] J. M. Borg, M. Mehrandezh, R. G. Fenton, and B. Benhabib,
“Navigation-guidance-based robotic interception of moving objects in
industrial settings,” J. Intell. Robot. Syst., vol. 33, no. 1, pp. 1–23,
Jan. 2002.

[16] F. Agah, M. Mehrandezh, R. G. Fenton, and B. Benhabib, “On-line robotic
interception planning using rendezvous-guidance technique,” J. Intell.
Robot. Syst.: Theory Appl., vol. 40, no. 1, pp. 23–44, May 2004.

[17] T. S. Jacob and S. Micha, “On the ‘Piano Movers’ problem. I: The case
of a two-dimensional rigid polygonal body moving amidst polygonal
barriers,” Commun. Pure Appl. Math., vol. 36, no. 3, pp. 345–398, 1983.

[18] G. G. Elmer and W. J. Daniel, “Distance functions and their applications to
robot path planning in the presence of obstacles,” IEEE J. Robot. Autom.,
vol. 1, no. 1, pp. 21–30, Mar. 1985.

[19] H. Hu, M. Brady, and P. Probert, “Navigation and control of a mobile
robot among moving obstacles,” in Proc. IEEE Conf. Decision Control,
Brighton, U.K., Dec. 1991, pp. 698–703.

[20] S. Cameron, “Obstacle avoidance and path planning,” Ind. Robot, vol. 21,
no. 5, pp. 9–14, 1994.

[21] R. Simmons, “The curvature-velocity method for local obstacle avoid-
ance,” in Proc. IEEE Int. Conf. Robot. Autom., Minneapolis, MN,
Apr. 1996, pp. 2275–2282.

[22] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[23] W. Feiten, R. Bauer, and G. Lawitzky, “Robust obstacle avoidance in
unknown and cramped environments,” in Proc. IEEE Int. Conf. Robot.
and Autom., San Diego, CA, May 1994, pp. 2412–2417.

[24] F. Zhang, A. O’Conner, D. Luebke, and P. S. Krishnaprasad, “The exper-
imental study of curvature-based control laws for obstacle avoidance,” in
Proc. IEEE Int. Conf. Robot. and Autom., New Orleans, LA, Apr. 2004,
vol. 4, pp. 3849–3854.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 6, DECEMBER 2006 1441

[25] N. Y. Ko and R. G. Simmons, “The lane-curvature method for local ob-
stacle avoidance,” in Proc. IEEE Conf. Intell. Robots and Syst., Victoria,
BC, Canada, Oct. 1998, pp. 1615–1621.

[26] P. Ogren and N. E. Leonard, “A tractable convergent dynamic window
approach to obstacle avoidance,” in Proc. IEEE Int. Conf. Intell. Robots
and Syst., Lausanne, Switzerland, Sep. 2002, vol. 1, pp. 595–600.

[27] H. Hu and M. Brady, “A Bayesian approach to real-time obstacle avoid-
ance for mobile robots,” Auton. Robots, vol. 1, no. 1, pp. 69–92, Jan. 1994.

[28] D. Fox, W. Burgard, S. Thrun, and A. Cremers, “A hybrid collision
avoidance method for mobile robots,” in Proc. IEEE Int. Conf. Robot.
and Autom., 1998, pp. 1238–1243.

[29] F. Large, S. Sekhavat, Z. Shiller, and C. Laugier, “Towards real-time
global motion planning in a dynamic environment using the NLVO con-

cept,” in Proc. IEEE Int. Conf. Intell. Robots Syst., Lausanne, Switzerland,
2002, vol. 1, pp. 607–612.

[30] D. Castro, U. Nunes, and A. Ruano, “Reactive local navigation,” in
Proc. IEEE Annu. Conf. Ind. Electron., Sevilla, Spain, Nov. 2002, vol. 3,
pp. 2427–2432.

[31] D. Bourgin, Color Space FAQ. (2004, Aug.). [Online]. Available:
http://www.neuro.sfc.keio.ac.jp/~aly /polygon/info/color-space-faq.html

[32] C. B. Bose and J. Amir, “Design of fiducials for accurate registration using
machine vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 12,
pp. 1196–1200, Dec. 1990.

[33] T. Chan, “Design of control system of a mobile soccer playing robot,”
M.S. thesis, The Edward S. Rogers Sr. Dept. Elect. Comput. Eng., Univ.
Toronto, Toronto, ON, Canada, 2003.


