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Abstract

The surveillance of a manoeuvring target with multiple sensors in a coordinated manner requires a method for selecting and

positioning groups of sensors in real time. Herein, the principles of dispatching, as used for the effective operation of service vehicles,

are considered. The object trajectory is first discretized into a number of demand instants (data acquisition times), to which groups

of sensors are assigned, respectively. Heuristic rules are used to determine the composition of each sensor group by evaluating the

potential contribution of each sensor. In the case of dynamic sensors, the position of each sensor with respect to the target is also

specified. Our proposed approach aims to improve the quality of the surveillance data in three ways: (1) The assigned sensors are

manoeuvred into ‘‘optimal’’ sensing positions, (2) the uncertainty of the measured data is mitigated through sensor fusion, and (3)

the poses of the unassigned sensors are adjusted to ensure that the surveillance system can react to future object manoeuvres. If

a priori target trajectory information is available, the system performance may be further improved by optimizing the initial pose of

each sensor off-line. The advantages of dispatching dynamic sensors over similar static-sensor systems are demonstrated through

comprehensive simulations.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Currently, objects to be manipulated by industrial
robots must be presented at specific (fixed) locations and
times to ensure success. Variations in object presenta-
tion, unless accounted for a priori, may result in the
failure of the robot to grasp the object. Thus, an
important research problem in the field of autonomous
robotic systems has been on-line robot-motion planning

for the interception of manoeuvring objects.
Recent research efforts have resulted in numerous

methodologies for target interception that are capable of
responding to real-time variations in object location
(e.g., [1,2]). In order to determine a suitable interception
point, however, these methods have relied on real-time
estimates of the object’s motion as perceived by static

sensors (often, only one). Unfortunately, sensor mea-
surements tend to be inherently noisy and prone to
obstructions. Thus, this paper’s objective is to con-
tribute to the state-of-the-art in moving-object surveil-
lance by utilizing a reconfigurable surveillance system
that may comprise multiple static and dynamic sensors.
The approach taken is similar to techniques developed
for the coordination and dispatching of service vehicles.

Just as the system response for a taxi company can be
improved by effective dispatching, the quality of the
sensor data acquired by a set of sensors can be improved
through appropriate selection and positioning; however,
sensors introduce an additional consideration. Dis-
patching multiple sensors (as opposed to only one) to
observe the target at a particular location provides an
opportunity to significantly improve the quality and
robustness of the data. Specifically, sensor fusion may
be used to combine information from these multiple,
coordinated sensors into a single, more accurate,
representation [3].

*Corresponding author.

E-mail addresses: naish@eng.uwo.ca (M.D. Naish), ecroft@mech.

ubc.ca (E.A. Croft), beno@mie.utoronto.ca (B. Benhabib).

0736-5845/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0736-5845(02)00085-6



1.1. Vehicle dispatching

Strategies and techniques used for scheduling and
dispatching service vehicles have been investigated by a
number of researchers [4–10]. Typically, each vehicle is
assessed for assignment to a demand based on a set of
evaluation criteria, such as nearest-vehicle, longest-idle-
vehicle, and least-utilized-vehicle.

Various techniques have been proposed to balance the
goals of efficiency of operation and an equitable
distribution of workload. These include fuzzy logic [5],
neural networks [6], and genetic programming [7].
Powell [9], and Ran and Boyce [10], compare a number
of other optimization approaches to the problem of
dynamic vehicle allocation (DVA): (1) deterministic
networks, (2) stochastic networks, (3) Markov decision
processes, and (4) stochastic programming.

Among the above mentioned techniques, the rolling-
horizon concept developed by Psaraftis [8] to solve a
class of dynamic vehicle-routing problems is of parti-
cular interest to our work. In this algorithm, developed
for cargo-ship assignments, during any given iteration,
only known cargoes that must be picked up within the
time period of the rolling horizon (from the current
instant to a certain period of time into the future) are
considered. Permanent assignments are made to eligible
ships only for those cargoes available at the beginning of
the rolling horizon (since more immediate events are
known with greater certainty); all other cargoes are
assigned tentatively to eligible ships. The rolling horizon
is then shifted to the next time step.

1.2. Sensor dispatching

Systems that utilize sensors for tasks such as inspec-
tion, identification, tracking, and surveillance often
employ approaches that are specific to the requirements
of a particular application. The system proposed in [11],
for example, considers the placement of sensors to
optimize both feature visibility and measurement
reliability. An off-line ‘‘generate-and-test’’ method is
used to determine the best sensor position for measuring
each object feature with a single sensor. These simple
solutions are then combined on-line to accomplish more
complex tasks such as the placement of a pair of
cameras for stereo inspection and sequential inspection
of a set of features. Zhang [12] addressed the problem of
optimally placing multiple identical sensors to be used
for sensor fusion in a 2-D workspace, by minimizing the
magnitude of the sensor measurement covariances.

The system proposed in [13] proposes to handle
moving objects by discretizing time and computing new
viewing configurations for each time interval while
attempting to minimize changes in sensor position from
one time interval to the next. For a robot task known a
priori, Abrams et al. [14], seek viewpoints that satisfy

task constraints over the entire task interval; if none
exist, the interval is divided until satisfactory viewpoints
are found. In the case that multiple sensors are used,
each is allowed to be active for a different time interval.

Matsuyama et al. [15] use the concept of a story-
board1 to plan the motion of multiple cameras. Camera
layouts (in 2-D) are determined through optimization;
camera actions and temporal camera switching and
coordination are determined through heuristics. Once a
plan has been developed off-line, an on-line camera
control system is used to adjust the camera switching
time to account for spatial and temporal deviations
from the storyboard, ensuring smooth dynamic scenes.

Horling et al. [16] take an agent-based approach to
the task of coordinating a number of different fixed
sensors. The workspace is divided into a number of
sectors, each with a managing agent. The managing
agents attempt to recruit sensors (each with a corre-
sponding agent) to scan the workspace for targets and,
once found, provide synchronized measurements that
may be fused to accurately estimate the real-time object
location.

2. Problem formulation

This paper considers the sensor dispatching problem
for the surveillance of a manoeuvring target using
proximity sensors. Before addressing our proposed
solution methodology to this problem in Section 3,
surveillance, data acquisition, and dispatching are
briefly discussed in the following Sections 2.1–2.3,
respectively.

2.1. Surveillance

Surveillance of a manoeuvring object refers to
obtaining estimates of particular object parameters at
predetermined times or positions along the object
trajectory. Herein, the specific parameter of interest is
the Cartesian position of a target. The times at which
this information is desired are referred to as demand
instants, tj : (Often, the interval between each demand
instant is a constant value, D:) The position of the target
for a particular demand instant is referred to as a
demand point, Dj ; Fig. 1.

In this paper, it is assumed that the object trajectory
covers a large part of the surveillance system’s work-
space—namely, the surveillance task spans relatively
long distances. Thus, continuous estimation of the
object parameters (i.e., tracking) is not considered in
this paper. Additionally, the sensors that comprise the

1A storyboard is a set of characteristic snapshots that define a

desired image sequence. It is often used to plan character actions and

camera positions for animation and film.
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surveillance system may be static or dynamic; the speed
and manoeuvrability of dynamic sensors are considered
to be inferior to the object. As a result, it would be
necessary to distribute the sensors throughout the
workspace to ensure a degree of data consistency over
the entire object trajectory.

2.2. Data acquisition

Herein, a 3-D proximity measurement is defined as
the range, bearing, and elevation to the object from a
known sensor pose (that is, a known sensor position and
orientation). For the sensor shown in Fig. 2, the range,
r; is the linear distance between the object and the sensor
frame. The bearing, y; is the angular difference between
the orientation of the sensor axis with respect to the x–z

plane, as; and the object position. The elevation, f; is the
angular difference between the orientation of the sensor
axis with respect to the x–y plane, bs; and the object
position. The Cartesian position of the object relative to
a world coordinate frame is, thus, determined through:

xo ¼ xs þ r cosðyþ asÞ cosðfþ bsÞ; ð1aÞ

yo ¼ ys þ r sinðyþ asÞ cosðfþ bsÞ; ð1bÞ

zo ¼ zs þ r sinðfþ bsÞ: ð1cÞ

There exist a number of different non-contact sensors
which may be used to measure the proximity of an
object. These generally utilize laser-triangulation, phase-
or amplitude-modulation based electro-optical transdu-
cers, ultrasonic transducers, or stereo vision [17,18]. In a

multisensor surveillance system, prior to fusion, data
from all such sensors must be preprocessed to perform
data alignment. Data alignment transforms incoming
sensor data into a common frame of reference through
coordinate transformations and unit conversions.

Specific data-fusion methodologies suitable for para-
meter estimation include the least-squares estimator
(LS) and its variations: weighted least squares (WLS),
Bayesian weighted least squares (BWLS), maximum
likelihood estimate (MLE), and minimum squared error
(MSE) [19]. These methods estimate the value that best
fits a set of redundant measurements using an estab-
lished optimization technique. The geometric fusion
approach [20] characterizes the uncertainty of a sensor
measurement by an ellipsoidal volume representing the
sensor covariance matrix. Geometric fusion produces
results that are similar to WLS with fewer computa-
tional resources. The Kalman filter (KF), and extended
Kalman filter (EKF) for nonlinear systems, is another
popular technique for the fusion of multi-sensor data
[21,22]. Kalman filtering is an iterative technique that
may be formulated entirely as scalar equations, making
it computationally efficient and thus suitable for real-
time applications.

2.3. Dispatching

Within the context of optimal dispatching, sensor
fusion does not need to combine data from all of the
sensors in the system. Instead, a subset of sensors (kpn;
where k is the subset size and n is the total number of
sensors) is selected, or assigned, to survey the object at a
particular demand instant. Herein, this group of sensors
is referred to as a fusion subset, Fig. 3. At the time of
data acquisition, only sensors that comprise the fusion
subset become operational. The k measurements are
then fused into a single representation.

The general dispatching problem addressed in this
paper is, thus, stated as: Given a set of sensors, determine

the best fusion subset (of sensors) for the next immediate

demand instant, while considering a rolling horizon of

possible future demand points. The implications of
solving this dispatching problem effectively are more
important for dynamic (mobile) sensors than static ones.
For the former, the dispatching problem also involves
determining the optimal placement of the (fusion subset)
sensors in the workspace for the surveying of the object
at the next immediate demand instant, as well as the
distribution of the remaining sensors for potential
future use.

In the above context, dispatching may then be
accomplished using two complementary strategies.
First, a ‘‘coordination strategy’’ specifies which sensors
will be used for surveillance at each and every demand
instant in the rolling horizon. The goal of the dispatcher
is to select, for each demand instant, the most

OBJECT LOCATION

AXIS
SENSOR

Fig. 2. Measurement variables for a proximity sensor.

OBSERVED OBJECT MOTION

Fig. 1. Future demand points corresponding to demand instants t1; t2;
and t3; as predicted from observed past object motion at current time.
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appropriate sensors for inclusion in a fusion subset. This
selection should be based on a logical search through the
sensor set, using an objective function, to evaluate the
fitness of each sensor. Next, a ‘‘positioning strategy’’
specifies the pose of each of the sensors. This latter
strategy positions each sensor whether it has been
assigned (by the coordination strategy) to the first
demand instant at hand, or to any one of the future
demand instants.

3. Proposed dispatching strategy

This section outlines an approach by which sensors
can be evaluated, selected, and positioned for the
surveillance of a manoeuvring object. The approach is
first formulated as a generic optimization that attempts
to simultaneously determine suitable coordination and
positioning strategies, thereby implementing an overall
dispatching strategy for the system. This concurrent-
solution method serves as a precursor to the heuristic-
based method, which is better suited to real-time
applications and adopted in this paper.

3.1. Objective function

The coordination strategy requires that the dispatcher
select the most appropriate sensors for inclusion in a
fusion subset. This selection must be based on some
estimate of the data quality that each sensor can provide
for the demand point at hand. One such estimate of
sensing quality is a measure of visibility, vs; that would
be inversely proportional to the sensor’s measurement
uncertainty and vary as its pose changes relative to the
measurand (demand point location). For a multisensor
fusion subset, the individual visibilities of all the sensors
considered for inclusion in the fusion subset must be
combined into a single metric, vf ; that would represent
the benefit of this subset with respect to other possible
subsets:

vf ¼ f ððvsÞi; i ¼ 1;y; kÞ: ð2Þ

The value of the overall visibility metric given in Eq. (2)
would vary as we choose different (combinatoric) sets of
k sensors (from the n available) and vary their locations
with respect to the (predicted) location of the demand
point. An effective search methodology is necessary to
determine the best set of sensors and their locations in
order to maximize vf :

3.2. Optimal search methodology

Having an objective function by which different
configurations of sensors may be assessed allows for
the determination of optimal solutions to the dispatch-
ing problem. One such limited-scope methodology
would be only to consider a finite segment of the object
trajectory during the search for best fusion subsets. This
segment, referred to as the rolling horizon, would
include only a limited number, m; of demand instants.

A two-level nested search would have to be carried out
to simultaneously determine all the ‘‘best’’ fusion subsets
and the locations of the sensors within each subset when
acquiring information regarding their own respective
object demand location (on the rolling horizon):

1. Coordination strategy: A combinatorial search tech-
nique is used to select m combinations of k sensors
from the set of all sensors, n; one fusion subset for
each demand point.

2. Positioning strategy: The best achievable pose for
each sensor with respect to its demand point is
determined using a constrained nonlinear search
technique. The best achievable pose is one that
maximizes the visibility of the object at the demand
instant, constrained by the dynamic limitations of the
sensor (i.e., since one sensor may belong to multiple
fusion subsets, the best achievable pose for a specific
demand point may be inferior to the globally optimal
pose that could have been obtained with sufficiently
fast sensors).

In the above optimization algorithm, for each demand
point, Eq. (2) could be used to evaluate the fusion subset
and the sensor poses.

Fig. 3. Coordination strategy for two demand points using 4 sensors. Sensors comprising each fusion subset are circled. (a) Demand point: A; fusion

subset: 1–2–3. (b) Demand point: B; fusion subset: 1–2–4.
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While the above approach to dispatching would yield
locally optimal solutions, the required extensive combi-
natorial and nonlinear searches, even when m is small,
would be computationally demanding, potentially ren-
dering the dispatching method unsuitable for on-line
implementation, even with faster computers. Thus, in
this paper, a heuristic approach to sensor dispatching
that follows the general principle of the above locally
optimal solution is adopted.

3.3. A heuristic approach to dispatching

There exist two primary differences between the above
optimal method and the heuristic dispatching solution
proposed below to the multisensor surveillance problem.
First, the heuristic approach does not attempt to
optimize each fusion subset, but rather considers each
sensor individually; secondly, instead of considering all
of the demand instants concurrently, each is considered
sequentially (from the beginning to the end of the rolling
horizon—t1;y; tm). An ‘‘assignment and positioning’’
search considers only the ‘‘first’’ demand instant and
assigns to it the best k sensors, while a ‘‘preassignment
and prepositioning’’ search method considers the
remaining demand instants on the rolling horizon and
makes pseudo-assignment of corresponding fusion
subsets, which become permanent only after the ‘‘first’’
demand instant has been serviced.

3.3.1. Assignment and positioning

Given the predicted location of the first demand point
on the rolling horizon, Dj ; the assignment and position-
ing method selects an optimal subset of sensors (of size
k) from the set of all sensors, n; to service this demand
instant (i.e., coordination strategy). The search method
also specifies a desired pose for each sensor at the time
of data acquisition (i.e., positioning strategy), Fig. 4.

Assignment for tj (i.e., selection of sensors and their best
locations) occurs only once during each search interval
(the time between the previous and current demand
instants). (It is triggered by an object entering the
workspace or the completion of the previous search
interval.) Namely, the selection of the sensor set cannot
be altered until the first demand instant on the rolling
horizon has been serviced; however, the pose of each
sensor may be altered in real time. Pose adjustment
would be handled by a replanning method described
later in this paper.

The general heuristic approach to the assignment and
positioning of sensors for a demand instant can be
summarized as follows:

(1) Predict2 the object’s pose, Dj ; with respect to the
world coordinate frame, at the demand instant, tj :

(2) For every sensor, Si; i ¼ 1;y; n:
(a) determine its best achievable pose with respect

to Dj ; and
(b) assess the corresponding (single sensor) visibi-

lity of Dj ; vs; from the best achievable pose.
(3) Rank all Si according to their achievable visibility,

ðvsÞi; from highest to lowest.
(4) Assign the top k ranked sensors to tj : (The desired

pose of each assigned sensor is the best achievable
pose determined in Step 2a.)

3.3.2. Preassignment and prepositioning

Once an assignment has been made for the first
demand instant of the rolling horizon, the proposed
preassignment and prepositioning search method
selects sensors for pseudo-assignment to subsequent
demand instants. The objective here is to position the
unassigned sensors in anticipation of future service
requirements. All sensors are considered for pseudo-
assignment; however, only sensors that have not been
assigned by the assignment and positioning module
(sub-system) may be pseudo-assigned to a future
demand instant, Fig. 5. Note that, previously assigned
sensors are evaluated from their (assigned) desired
poses and may, in effect, be assigned to multiple
future demand instants, though their future position
will not be determined until the next search interval.
This approach aims to service each demand with
the sensors that can provide the highest quality data,
rather than by those that are least utilized. Additional
demand instants are considered until either all sensors
have been pseudo-assigned, the maximum number of
future demand instants, m (equal to the rolling horizon
size), has been reached, or the search interval has
expired.

Fig. 4. Assignment and (future) positioning of S1; S2; and S3 to Dj : S4

is unassigned.

2Herein, it is assumed that, the prediction of the demand points is

performed by an external prediction subsystem.
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The general preassignment and prepositioning proce-
dure can be summarized as follows:

(1) Let p ¼ 1:
(2) Predict the object’s pose, Djþp; with respect to the

world coordinate frame, at the demand instant, tjþp:
(3) For each sensor, Si; i ¼ 1;y; n:

(a) determine its best achievable pose with respect
to Djþp; and

(b) assess the (single sensor) visibility of Djþp; vs;
from the best achievable pose.

(4) Rank Si according to best visibility, ðvsÞi; from
highest to lowest.

(5) For the top k ranked sensors, Si; i ¼ 1;y; k;
determine whether any has been assigned to an
earlier demand point. Those that have not been are
assigned to tjþp:

(6) If pom � 1 (i.e., the end of the rolling horizon has
not been reached) and sensors remain unassigned,
let p ¼ p þ 1 and return to Step 2; else, if p ¼ m � 1
(i.e., the last point on the rolling horizon), assign
any unassigned sensors to the final point on the
rolling horizon, tjþm�1:

The above approach is nearly identical to that used for
assignment and positioning. The searches, however, are
separated here to emphasize that different criteria may
be used for assignment versus preassignment, depending
on the requirements of the application and the
capabilities of the system. For example, a faster
algorithm may be used for preassignment, allowing
more elaborate measures to be taken for the evaluation
of sensors during the assignment search.

In conclusion to the above discussion of assignment
and positioning and preassignment and prepositioning,
one must note that the success of sensor dispatching
would be dependent on the initial pose of each sensor

within the workspace. This is especially true for sensors
with limited dynamic capabilities with respect to the
object. In general, the slower the sensors are, the more
widely distributed through the workspace the sensors
should be. Thus, if any part of the object trajectory
is known a priori, an optimal initial configuration of
the sensors can be determined. One such technique for
determination of the initial surveillance-system config-
uration will be discussed in Section 5.

4. An implementation methodology

The heuristic approach to dispatching discussed in
Section 3.3 is implemented in this paper using an on-
line, modular surveillance-system reconfiguration-
planning architecture. In this section, after introducing
a visibility measure specific to proximity sensors, the
remaining subsection provides relevant details about the
proposed modular architecture.

4.1. Visibility measure for proximity sensing

As discussed in Section 3.1, a visibility metric can be
used to evaluate the quality of information that a sensor,
or a group of sensors, can provide about a demand
point. The visibility measure for a single proximity
sensor is considered in this paper to be:

vs ¼

1

jjRjj
if the demand point is unoccluded;

0 otherwise;

8><
>: ð3Þ

where jjRjj is the Euclidean norm of the covariance
matrix associated with the sensor measurement. For the
proximity sensor in Fig. 2, the variance in r; y; and f
may be expressed as

s2r ¼
a þ b1jr � rnj2 if rorn; rARþ;

a þ b2jr � rnj otherwise;

8<
: ð4Þ

s2y ¼
c þ dy2 if jyjoymax; yAR;

N otherwise;

8<
: ð5Þ

s2f ¼
e þ ff2 if jfjofmax; fAR;

N otherwise;

8<
: ð6Þ

where a; b1; b2; c; d; e; and f are characteristic constants.
rn is the range between the sensor and the object at
which the variance is minimal; here, the variance is equal
to the constant error a: If the range is small, the variance
increases proportional to b1; if the range is large, the
variance increases proportional to b2: Similarly, for
the variance in bearing and elevation, c and e are the
constant measurement errors, while d and f represent

Fig. 5. Preassignment and prepositioning of S4 to Djþ1 and potential

future poses of the remaining sensors.
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the increase in variance incurred by deviations of the
object position from the sensor axis. ymax and fmax limit
the field of view of the sensor. Assuming that s2r ; s

2
y; and

s2f are uncorrelated, the covariance matrix R may be
expressed in Cartesian coordinates as follows:

R ¼

s2x sxy sxz

syx s2y syz

szx szy s2z

2
6664

3
7775; ð7Þ

where, letting q ¼ jr � rnj;

s2x ¼s2r cos
2ðyÞ cos2ðfÞ � q2s2y sin

2ðyÞ cos2ðfÞ

� q2s2f cos2ðyÞ sin2ðfÞ; ð7aÞ

s2y ¼ s2r sin
2ðyÞ cos2ðfÞ þ q2s2y cos

2ðyÞ cos2ðfÞ

� q2s2f sin2ðyÞ sin2ðfÞ; ð7bÞ

s2z ¼ s2r sinðfÞ þ q2s2f cos2ðfÞ; ð7cÞ

sxy ¼ syx

¼ ½1
2
sinð2yÞ�½½s2r � q2s2y� cos

2ðfÞ þ q2s2f sin2ðfÞ�; ð7dÞ

sxz ¼ szx ¼ cosðyÞ½1
2
sinð2fÞ�½s2r � q2s2f�; ð7eÞ

syz ¼ szy ¼ sinðyÞ½1
2
sinð2fÞ�½s2r � q2s2f�: ð7fÞ

The visibility measure for a fusion subset comprising k

sensors, whose measurements are combined using sensor
fusion, is defined as

vf ¼
1

jjPjj
; ð8Þ

where P represents the fused covariance matrix,

P ¼
Xk

i¼1

R0�1
i

" #�1

ð8aÞ

and

R0
i ¼

Ri if demand point is unoccluded;

| otherwise:

(
ð8bÞ

4.2. Surveillance-system reconfiguration-planning

architecture

The architectural approach adopted herein is one of
modularity, Fig. 6. A ‘‘blackboard’’ provides a con-
trolled method for the exchange of data between the
various modules, as outlined in Table 1. Information
exchange is controlled by a data-management module.
The rolling horizon is defined by a prediction module,
which uses observations of the object motion (provided
by an observation module) to estimate the demand-
point locations. Assignment and positioning and pre-
assignment and prepositioning are carried out by their
respective modules. The desired pose of each assigned
sensor is reassessed by a replanning module, as the
estimates of the demand-point locations become more
accurate. Finally, a sensor-motion-control module
commands the sensors into their assigned poses.

4.2.1. Data-management module

The surveillance system data is managed using a
blackboard architecture. This common memory space
ensures that multiple modules can access the current
state of common system variables. The data-manage-
ment module provides controlled access to the black-
board, ensuring data integrity. By restricting which
modules can write to different areas of the blackboard,
the data cannot be inadvertently corrupted. A number
of different tables, or data areas, are maintained by the
data-management module:

D Updated by the prediction module, this table
maintains information about the demand instants

TIME

KALMAN
FILTER

DISPATCHER

POSITIONING
ASSIGNMENT &

PREASSIGNMENT &
PREPOSITIONING

REPLANNING

OBSERVATION

TARGET SENSORS

TARGET
POSE

CLOCK

DISPATCHING

SENSOR
LIST

RANKED
LIST ASSIGNMENT SENSOR

POSES
DEMAND
POINTS

DATA-MANAGEMENT (BLACKBOARD)

CONTROL

SENSOR
MOTION PREDICTION

(TABLE Sa) (TABLE R) (TABLE A) (TABLE S) (TABLE D)

Fig. 6. Data flow between software modules through a blackboard.
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that comprise the rolling horizon and the predicted
location of corresponding demand points.

S Maintains the current pose of each sensor, updated
in real time by the sensor-motion-control module.

Sa Provides a constant, ‘‘time-stamped’’ reference of
sensor poses for assignment purposes, unaffected by
adjustments made by the sensor-motion-control
module. It contains both the current location of
unassigned sensors and the expected (desired) pose
for assigned sensors at future times.

R Used to evaluate sensors for assignment to a
demand point, this table maintains a number of
measures for evaluating the fitness of each sensor
with respect to the demand point.

A Reflects the assignment and desired pose of each
sensor.

4.2.2. Prediction module

The prediction module predicts the object’s future
locations in the workspace (estimation of the locations
of future demand instants). Namely, it determines the
rolling horizon for each search interval (the time
between two consecutive demand instants) and provides
frequent real-time predictions of the object location for
each demand instant during the search interval. These
predictions are based on observations of the target pose
provided by the observation module; observations may
come from the very sensors that are being assigned
and positioned, or from a separate set of sensors. An
overhead camera is often utilized for wide-field, low-
resolution estimation of object location.

Herein, a Kalman filter [23] is proposed for prediction
of the object’s motion. The KF is particularly suited
to our application (multisensor surveillance) since each
estimate has an associated error covariance matrix that
provides an estimate of the uncertainty in the prediction.

4.2.3. Assignment and positioning module

The algorithm used for the assignment of sensors to a
demand instant ðtjÞ is outlined in Algorithm 1 given in

Appendix A. An iterative-ranking approach is used to
select sensors for assignment to the demand instant
using ‘‘increasingly complex’’ ranking procedures. This
ensures that the best possible assignment is made, even if
the system does not have the time to fully assess the
capabilities and suitability of each sensor.

The sensors are first ranked using a priori informa-
tion, based solely on the demand point. Next, they are
ranked by computing their normalized distances (actual
distance/maximum velocity of sensor) to the demand
point (i.e., closer sensors are ranked higher than those
further away). Finally, each sensor is ranked according
to the visibility of the demand point from its best
achievable pose, Section 3.3. Once all sensors have been
considered, or the search time has run out, the top k

ranked sensors are assigned to the demand instant at
hand. The algorithm outputs the assigned subset and a
desired pose for each assigned sensor.

4.2.4. Preassignment and prepositioning module

The algorithm used to select sensors for preassign-
ment and prepositioning relative to future demand
points is outlined in Algorithm 2, given in Appen-
dix A. The algorithm is very similar to that used for
assignment and prepositioning. The primary differences
are that the sensors selected for assignment may have
already been assigned to another (earlier) demand
instant, and that the algorithm iterates through multiple
demand instants ðtjþ1;y; tjþm�1Þ attempting to (pseudo)
assign all sensors as discussed in Section 3.3.

4.2.5. Replanning module

Replanning is initiated upon the assignment of
sensors to a demand point and runs continuously during
the search interval. Algorithm 3 in Appendix A outlines
how the desired poses of assigned sensors may be
adjusted as the estimates of the demand points improve.

The desired sensor poses are adjusted only if an
improvement in object visibility can be guaranteed.
This requires that the demand point at the time of

Table 1

Data exchange

Module Purpose Table interactionn

D S Sa R A

Data-management Controls read and write access to blackboard. R;W R;W R;W R;W R;W
Prediction Estimates demand point locations based on target observations. W

Assignment and positioning Assigns a fusion subset (with desired poses) to the first demand

instant on the rolling horizon.

R R R;W R;W W

Preassignment and

prepositioning

Pseudo-assigns sensors (with desired poses) to subsequent

demand instants on the rolling horizon.

R R;W R;W R;W

Replanning Adjusts desired sensor poses as demand-point estimates improve. R R R;W
Sensor-motion-control Commands sensors into desired poses and reports

real-time sensor pose.

W R

Key: R indicates read access; W, indicates write access.
n (See Fig. 6 for Table labels.)
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assignment, Dj ; lie outside of the confidence zone for the
most recent estimate of the demand point location, D0

j :
The confidence zone is defined by constructing an
uncertainty ellipse [24] around the demand point
location using the estimated error covariance matrix
(from the prediction module) scaled by a user-defined
variable,3 r: If Dj lies within the confidence zone for D0

j ;
no replanning is done since adjustment of the sensor
poses provides no guaranteed benefit [25]. Otherwise, Dj

is replaced with D0
j and the desired poses of the

corresponding sensors are determined anew, Fig. 7.

4.2.6. Sensor-motion-control module

The sensor-motion-control module serves to man-
oeuvre each sensor into its desired pose, as read from the
assignment table, A: This information is used in
combination with knowledge of the sensor dynamics
and the current pose of each sensor to plan a motion
trajectory. The aim of the sensor-motion-control mod-
ule is to ensure that the sensor poses are as close as
possible to the desired poses at all times. Any change
made to the desired pose of a sensor, either through
positioning, prepositioning, or replanning, is immedi-
ately reflected in the motion plan for that sensor. The
trajectory for each sensor is defined such that the error
between the actual pose and the assigned pose (the best
achievable pose with respect to the demand point) is
minimized. For proximity sensors, this involves aligning
the sensor axis with the demand point and minimizing
the distance between the sensor and the demand. Thus,
if the dynamic limitations of the sensor prevent the
sensor-motion-control module from achieving the de-
sired pose of the sensor, the quality of the data provided
by the sensor will be as good as possible under the
circumstances.

5. Initial Surveillance-System configuration

As mentioned earlier, the initial pose of each sensor
could impact surveillance quality. This is especially true
in the case of slow-speed or fixed sensors. It is, therefore,
desirable to search for an optimal initial pose for each
sensor based on the requirements of the task at hand.
This section proposes one such technique for the
determination of the initial configuration for the
surveillance system.

5.1. Problem formulation and a solution methodology

The initial surveillance-system configuration specifies
the initial poses of the set of sensors that will be

available during surveillance. Determined off-line, it
serves to initially distribute and position the sensors
within the workspace in an optimal manner based on a
priori information available for the target motion over
the entire workspace. The objective in determining this
initial configuration could be to maximize a visibility
criterion over the entire object motion.

The overall visibility measure of the object over its
‘‘entire motion’’, vc; may be stated as

max vc ¼ w1 min
m

i¼1
ðvbÞi þ w2ðvbÞ1: ð9Þ

The objective function value to be maximized, vc; in
Eq. (9) above, consists of two parts: (1) chooses the
minimum of all the individual best-achievable visibilities
ðvb 
 max vf Þ at the i ¼ 1 to m demand instants as the
representative (best achievable) overall visibility of the
moving object by the surveillance system, if it were to
have the initial configuration under consideration; (2)
places additional emphasis on the visibility of the object
at the first demand instant. w1 and w2 are user-chosen
weighting factors which serve to balance between these
two objectives, w1 þ w2 ¼ 1:0:

Eq. (9) is utilized as follows: First, a guess of the
object trajectory4 is discretized and used to define a set
of demand instants. Then, for a set of initial sensor
poses chosen by a search technique,5 a comprehensive
sensor dispatching simulation is conducted to survey the
object at all of the demand instants. For each demand
instant, sensors are dispatched and positioned to affect
the best-achievable visibility as described in Section 4.
The best-achievable visibility, vb; is then determined
using Eq. (2), i.e., ðmax vf Þ; with the assigned sensors in

Fig. 7. Replanning for Dj : D0
j is the updated prediction of the demand

point.

3Values of r > 1 increase the size of the confidence zone, decreasing

the likelihood of replanning; values of ro1 reduce the confidence

zone, increasing the chance of replanning.

4Herein, a single object trajectory is assumed; a methodology

suitable for multiple expected object trajectories is discussed in [26].
5The specific search technique utilized in our simulations was the

flexible tolerance method [27,28].
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these ‘‘best’’ poses. The overall object visibility for the
entire motion is subsequently determined using Eq. (9).
Having determined vc; the search technique is invoked
again to vary the initial sensor poses. This process is
repeated until the ‘‘best’’ initial configuration is found
within a desired convergence value, i.e., ðmax vcÞ:

5.2. Example configurations

For the 2-D workspace illustrated in Fig. 8 with four
surveillance sensors, a number of different optimal
initial surveillance-system configurations may be deter-
mined depending on the dynamic characteristics of the
sensors and the expected object trajectory. Sensors are
constrained to rails at the edge of the workspace, but are
free to assume any position and orientation along the
rail. Thus, each sensor has two degrees of freedom:
rotation, a; and horizontal translation, x: The initial
surveillance-system optimization problem, thus, max-
imizes Eq. (9) with eight parameters: the initial (planar)
position and orientation for each of the four sensors.
(The vertical position of each sensor is fixed by the rail
to which it is constrained.)

Figs. 9(a)–(d) show the outcomes of a number of
different searches for which the maximum translational
and rotational velocities of the sensors were varied; all
of the other parameters were kept identical. In each case,
the object is assumed to follow a diagonal straight line
across the workspace. The weighting factors were set as:
w1 ¼ 2

3
and w2 ¼ 1

3
: vb was evaluated using Eq. (8). Note

that, Fig. 9(a) illustrates the optimal initial surveillance-
system configuration for a set of (fixed) static sensors.
Namely, once placed at their optimal locations, dis-
patching only decides on sensor assignments for the
different demand instants.

6. Dispatching simulation examples

The examples presented in the following section serve
to illustrate different performance aspects of the
proposed approach to dispatching. In particular, sur-
veillance-system performance is evaluated under chan-
ging object trajectories and sensor dynamics. For ease of
illustration, a 2-D workspace is assumed. For all
examples, the object moves at approximately 0:2 m=s:
Demand points are predicted on the basis of lower-
resolution images acquired from an overhead camera,
Fig. 8. These observations are corrupted by Gaussian
noise with s ¼ 0:02 m: In each simulation, fusion
subsets of size 3 were used with a rolling horizon size
of 3 demand instants separated by 0:6 s: The sensor
parameters were set as follows: a ¼ 2:5e�5 m;

X

Y S3

S4

S1

1.0 m

0.875 m

OBJECT

OVERHEAD CAMERA

RAILSS2

SENSORS

Fig. 8. Overview of example workspace configuration. (a) _xx ¼ 0ms�1; _�� ¼ 0 rad s�1; (b) _xx ¼ 0:1ms�1; _�� ¼ �=3 rad s�1.

Fig. 9. Optimal initial surveillance-system configuration for sensors

with varying maximum velocities. (a) _xx ¼ 0:2ms�1; _�� ¼ �=2 rad s�1;

(b) _xx ¼ 2:5ms�1; _�� ¼ 2� rad s�1.
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b1 ¼ 1:25e�3; b2 ¼ 6:25e�5; rn ¼ 0:05 m; c ¼ 8e�5 rad;
d ¼ 50; and ymax ¼ p=4 rad:

6.1. Dispatching

The following simulation example illustrates how a
surveillance system is reconfigured in real-time using the
dispatching approach.

Example 1. Fig. 10 shows snapshots of a sample run for
a noise-corrupted straight-line object trajectory. Here,
the maximum translational velocity of each sensor is

’x ¼ 0:1 m=s; the maximum rotational velocity is ’a ¼
p
3 rad=s: The system starts from an initial configuration
optimized for these sensors and this object trajectory,
Fig. 9(b). (In each figure, the predicted demand point
locations are indicated by a cross ðþÞ: The actual
demand point locations, if the system were capable of
perfect prediction, are indicated by circles ðJÞ: Assigned
sensors appear as black and preassigned sensors as
grey.) The details of data acquisition and sensor
assignment are outlined in Table 2.

6.2. Sensitivity to dynamic characteristics of sensors

Example 1 (Fig. 10) demonstrated how reconfigura-
tion performs for a surveillance system with modest
dynamic capabilities. Here, the effect of changing the
dynamic characteristics of the surveillance system on the
performance of dispatching is investigated.

Fig. 11 presents the overall visibilities for four
different surveillance systems surveying an object that
is following the straight-line trajectory shown in
Fig. 9(a). The performance of these systems range from
very fast (at least an order of magnitude faster than the
object) to a static system in which the sensors have no
dynamic capability at all. (Note that, while the static
sensors cannot move, dispatching is still utilized to
determine the appropriate subsets of sensors (the
coordination strategy) in real time.) For each system,
its own optimal initial surveillance-system configuration
was determined as described in Section 5.

From Fig. 11, as expected, it can be seen that dynamic
surveillance systems outperform the static surveillance
system. The variation in visibility for the fast

Fig. 10. Straight-line trajectory. (a) t ¼ 1:28 s; (b) t ¼ 1:30 s; (c) t ¼ 1:90 s; (d) t ¼ 2:50 s; (e) t ¼ 3:08 s; (f) t ¼ 3:10 s.

Table 2

Assignments for straight-line trajectory

t Action Assignments vb

S1 S2 S3 S4

1.28 Sensors in motion t3 t3 t3 t5 —

1.30 Acquire t3 using 1-2-3; assign 1-2-3 to t4 t4 t4 t4 t6 0.8684

1.90 Acquire t4 using 1-2-3; assign 2-3-4 to t5 t5 t5 t5 t6 0.8689

2.50 Acquire t5 using 2-3-4; assign 2-3-4 to t6 t8 t6 t6 t6 0.7808

3.08 Sensors in motion t8 t6 t6 t6 —

3.10 Acquire t6 using 2-3-4; assign 2-3-4 to t7 t9 t7 t7 t7 0.8532

Key: tj indicates assigned; tj ; preassigned.
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surveillance systems is an artifact of the workspace
constraints placed on the sensors. By constraining the
sensors to rails, they cannot maintain a constant range
from the object. Thus, as the object approaches the
centre of the workspace, the visibility drops due to
increased range. The upper curve in Fig. 11 represents
the best achievable visibility under these conditions;
here, for each demand point, the assigned sensors match
the x-position of the object and align their axes directly
with the object ðy ¼ 0Þ:

A comparison between the ‘‘best’’ system and the
other systems indicates that increasing the speed of the
surveillance system beyond an upper limit is not
particularly valuable (e.g., the achieved visibilities for
’x ¼ 2:5 m=s; ’a ¼ 2p rad=s (best achievable) and ’x ¼
0:2 m=s; ’a ¼ p=2 rad=s are practically the same). How-
ever, it is clear that providing a surveillance system with

even limited dynamic capabilities (e.g., ’x ¼ 0:1 m=s
and ’a ¼ p=3 rad=s) may significantly improve its
effectiveness.

6.3. Robustness to trajectory variation

This section presents a simulation example that
demonstrates how dispatching can be used to adapt a
surveillance system to an object trajectory different from
the one for which the initial configuration was
optimized.

Example 2. For this example, the initial sensor poses
were optimized for the expected straight-line trajectory
shown in Fig. 9 (i.e., the initial configuration is identical
to that used for Example 1). Fig. 12 shows snapshots of
a sample run for a parabolic object trajectory; the
corresponding data is provided in Table 3.

Fig. 13(a) presents the overall visibilities of
the surveillance system for different sensor selections,
with dynamic capabilities ranging from static to
very fast. The initial poses of the sensors for each
surveillance system were determined as described in
Section 5 (with the expectation of a straight-line
trajectory).

As expected, the faster dynamic system ð ’x ¼
0:2 m=s; ’a ¼ p=2 rad=sÞ performs almost perfectly, the
slower dynamic system ð ’x ¼ 0:1 m=s; ’a ¼ p=3 rad=sÞ
fairs somewhat worse, and both dynamic systems
outperform the static system. The reduction in visibility
for the first demand is a result of the difference between
the expected and actual trajectories. The initial-config-
uration planning module optimally placed the sensors
on the top rail close to the left edge of the workspace
and the sensors on the bottom rail close to the right edge
of the workspace—an appropriate strategy for an object

1 3 5 7 8
Demand Number

0.0

0.5

1.0

1.5

2.0

V
is

ib
ili

ty
,v

b

Best achievable
x = 0.2, α = 1.57
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Fig. 11. Observed visibilities of a straight-line trajectory for different

surveillance systems.

Fig. 12. Parabolic trajectory. (a) t ¼ 1:90 s; (b) t ¼ 2:48 s; (c) t ¼ 2:50 s; (d) t ¼ 3:08 s; (e) t ¼ 3:10 s; (f) t ¼ 3:70 s.
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trajectory from the upper-left to the lower-right, but not
ideal for the parabolic trajectory that was observed.
When the object entered from the lower-left, the sensors
did not have an opportunity to react (sensing of the first
demand point is almost instantaneous and determined
through the initial configuration, not dispatching). As a
result, the sensors were not in an optimal pose, nor was
the initial fusion subset appropriate.

Fig. 13(b) illustrates how the performance of each
system would be altered, if they were provided with
prediction information prior to surveillance of the first
demand point. In this case, observations of the object
(using the overhead camera) began outside of the
workspace. These observations allowed for the a priori
initialization of the prediction module, which in turn
provided the dispatching and positioning modules with
better estimates of the first demand point and allowed
them sufficient time to optimally position the sensors for
best visibility. For all of the dynamic systems, the
performance is improved.

Several observations may be made from this example:
First, the simulations confirm that the surveillance
system can still provide valuable information, even
when the actual object trajectory deviates significantly
from the expected object trajectory. Second, adaptation
of the surveillance system to the trajectory is a function

of the dynamic capabilities of the sensors. In other
words, while the surveillance system’s performance may
degrade as the actual trajectory deviates from expecta-
tion, the degradation is more marked for slower sensors.
(It is important to note that even static systems still
provide surveillance information, just at a lower
visibility). This would indicate that the slower the
system, the more important a reasonable initial guess
of the object trajectory becomes.

6.4. Dispatching vs. non-dispatching systems

Fig. 14 compares a number of systems using the
dispatching methodology presented in this paper with a
system that does not use dispatching at all. The
dispatching systems select subsets of three sensors from
the four available for use in a sensor fusion process; the
non-dispatching system simply fuses the measurements
from all four sensors. In other words, the non-
dispatching approach may be stated as: ‘‘all the sensors,
all the time’’.

In the comparative runs considered in Fig. 14(a), each
system started with an initial configuration that was
optimized for a straight-line object trajectory and
observed the same trajectory ‘‘with noise’’. In Fig. 14(b),
each surveillance system was configured under the

Table 3

Assignments for parabolic trajectory

t Action Assignments vb

S1 S2 S3 S4

1.90 Acquire t4 using 1-2-3; assign 1-2-3 to t5 t5 t5 t5 t6 1.2324

2.48 Sensors in motion t5 t5 t5 t6 —

2.50 Acquire t5 using 1-2-3; assign 1-2-4 to t6 t6 t6 t8 t6 1.2686

3.08 Sensors in motion t6 t6 t8 t6 —

3.10 Acquire t6 using 1-2-4; assign 1-2-4 to t7 t7 t7 t9 t7 1.0540

3.70 Acquire t7 using 1-2-4; assign 2-3-4 to t8 t10 t8 t8 t8 0.7863

Key: tj indicates assigned; tj ; preassigned.
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Fig. 13. Observed visibilities for different surveillance systems expecting a straight-line trajectory. (a) Parabolic; (b) Parabolic with initial reaction.
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assumption that the object would follow a straight-line
trajectory, while the actual observed trajectory was
parabolic.

From these figures, it is clear that dispatching systems
outperform non-dispatching systems, provided that they
have at least limited dynamic capabilities. This is best
exemplified by the dynamic system having only rota-
tional capability ð ’x ¼ 0 m=s; ’a ¼ p=3 rad=sÞ that still
significantly outperforms the non-dispatching system.
One should not conclude from this that ’a capability is
more important than ’x; in fact, if the sensors can move
as fast as the object along the rails, rotational ability will
not improve the object visibility at all.

However, for static systems, the advantage of the
dispatching approach is not apparent. From a perfor-
mance perspective, the user of a static surveillance
system may be better off to simply use all of the sensors
at once. The use of dispatching for a static system may
only make sense if the costs associated with processing
the data from all of sensors at once compromises the
real-time performance of the system (e.g., high-resolu-
tion image processing). In this case, dispatching
provides an effective mechanism to select an appropriate
subset for processing.

7. Conclusions

A method for maximizing the effectiveness of moving-
object surveillance using multiple sensors is presented in
this paper. The overall goal of the method is to position
sensors in response to changing task-space demands.
This is shown to be possible using a two-part dispatch-
ing strategy, comprising coordination and positioning
strategies. The motion of each sensor is evaluated based
on the quality of information that each can provide for
specified object locations. From this, a group of sensors
(for use in a sensor fusion context) may then be assigned
to a particular demand point. In addition, the sensors

that are not required for the most imminent surveillance
task are assigned to future predicted demands and
manoeuvred in a controlled manner, rather than
remaining idle or moving randomly.

The surveillance-system configuration is adjusted
according to a continual reevaluation of the capabilities
of each sensor and the sensing requirements. This is a
reactive procedure, executed on-line; therefore, no
absolute condition of optimality is imposed. In fact,
the ability of the proposed dispatching approach to
effectively adjust the sensor poses is very dependent on
the number of sensors used, the manoeuvrability of the
sensors, and their initial poses. Variations in each of
these parameters, in addition to the accuracy of the
object motion prediction, would affect the overall
performance of the system. In this context, the use
of a dispatching methodology, combined with
dynamic sensors and sensor fusion, has been shown to
provide a considerable benefit over (fixed) static-sensor
surveillance systems. The increased accuracy and
robustness of a dynamic system makes it suitable for
tasks, such as the robotic interception of manoeuvring
objects, that require high-quality, real-time sensor
information.

Appendix A

This appendix provides a detailed description of the
algorithms used for assignment and positioning, pre-
assignment and prepositioning, and replanning, intro-
duced in Section 4. Note that, tcur in each algorithm
refers to the current time provided by a real-time clock;
and, sf is a factor of safety used to ensure that there is
sufficient time to carry out assignment and, once an
assignment has been made, to manoeuvre the sensors
into their assigned poses. m is the maximum number of
demand instants that will be considered by Algorithms 2
and 3.
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Fig. 14. Observed visibilities for dispatching vs. non-dispatching surveillance systems. (a) Straight-line; (b) Parabolic.
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Algorithm 1. Assignment and positioning

Initialize Table Sa with the current sensor poses
(from Table S) and the current time, tcur:

First level of refinement:
Initialize Table R with a priori desired poses for
each sensor based on the current demand instant, tj :

Clear the Assignment Table, A:

if no time remains in interval (i.e., tjotcur þ sf ) then
Goto OUTPUT

end if

Second level of refinement:
for i ¼ 1 to n (number of sensors) do

For row (sensor) i of Table R; calculate the
normalized distance between the demand point
Dj and the sensor (whose pose is specified in
Table Sa). Place the result in Column d of Table
R:

Sort Table R by distance (Column d).

if no time remains in interval (i.e., tjotcur þ sf )
then

Goto OUTPUT
end if

end for

Third level of refinement:
for i ¼ 1 to n (number of sensors) do

Determine the best achievable pose for the ith
sensor (row) from Table R (whose pose is
specified in Table Sa) with respect to Dj (pose
specified in Table D) in the time remaining in the
interval ðtj � tcur � sf Þ: Place the result in Pd of
Table R:

Determine the required motion time to move the
sensor from the current pose (in Table Sa) to the
desired pose (Pd in Table R). Store the result in
Column tmotion of Table R:

Calculate the visibility of Dj from best achiev-
able pose, Pd; using Equation (3). Place the
result in Column vs of Table R:

Sort Table R by visibility (Column vs).

if the current index is greater than the fusion
subset size (i.e., iXk) then

Determine the maximum motion time from
the first k sensors (rows) in Table R (i.e.,
max of Column tmotion).

if there is not enough time to manoeuvre the
sensors (i.e., tjotcur þ tmax þ sf ) then

Goto OUTPUT
end if

end if

end for

OUTPUT:
for i ¼ 1 to k (fusion subset size) do

Assign, in Table A; the ith ranked sensor in
Table R to Dj ; along with its desired pose, Pd:

Update Table Sa with the desired pose of the
assigned sensor. Place the time of tj in Column t

of Table Sa:
end for

Algorithm 2. Preassignment and prepositioning

Let p ¼ 1:
while pom (size of rolling horizon) and sensors remain
unassigned do

First level of refinement:
Initialize Table R with a priori desired poses for
each sensor based on the current demand
instant, tjþp:

if no time remains in interval (i.e., tjotcur þ sf )
then

Goto OUTPUT
end if

Second level of refinement:
for i ¼ 1 to n (number of sensors) do

For row (sensor) i of Table R; calculate the
normalized distance between the demand
point Djþp and the sensor (whose pose is
specified in Table Sa). Place result in Table
R:

Sort Table R by distance.

if no time remains in interval (i.e.,
tjotcur þ sf ) then

Goto OUTPUT
end if

end for

Third level of refinement:
for i ¼ 1 to n (number of sensors) do

if the ith sensor has already been assigned to
a demand instant then

Determine the best achievable pose for
the ith sensor (row) from Table R with
respect to Djþp in the time available for
motion (tjþp � sf�time of demand in-
stant sensor i is assigned to.) Place the
result in Pd of Table R:

else

Determine the best achievable pose for
the ith sensor (row) from Table R with
respect to Djþp in the time available for
motion ðtjþp � tcur � sf Þ: Place the result
in Pd of Table R:

end if

Calculate the visibility of Djþp from best
achievable pose, Pd; using Equation (3).
Place result in Table R:
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Sort Table R by visibility.

if no time remains in interval (i.e.,
tjotcur þ sf ) then

Goto OUTPUT
end if

end for

OUTPUT:
if pom � 1

for i ¼ 1 to k (fusion subset size)
if Sensor in row i of Table R has not been
assigned to a prior demand instant then

Assign, in Table A; the ith ranked
sensor in Table R to Djþp; along with
its desired pose, Pd:

Update Table Sa with the desired
pose of the assigned sensor. Place the
time of tjþp in Table Sa:

end if

end for

else if p ¼ m � 1 (last point on rolling horizon)
then

for i ¼ 1 to n (number of sensors) do
if Sensor in row i of Table R has not been
assigned to a prior demand instant then

Assign, in Table A; the ith ranked
sensor in Table R to Djþp; along with
its desired pose, Pd:

Update Table Sa with the desired
pose of the assigned sensor. Place the
time of tjþp in Table Sa:

end if

end for

end if

Let p ¼ p þ 1
end while

Algorithm 3. Replanning

while the demand instant tjotcur þ sf do

Iterate through demand points:
for p ¼ 0 to m � 1

Iterate through sensors:
for i ¼ 1 to n do

if the ith sensor in Table A is
assigned to demand point Djþp then

Get current estimate of Djþp

from Table D:

Compute the position errors dx;
dy; and dz as the difference
between position of Djþp at the
time of assignment (stored in
Table A) and the current posi-
tion of Djþp (in Table D).

Compare the position error with the prediction un-

certainties for current estimate of Djþp (scaled by r):

if dx > r
ffiffiffiffiffi
s2x

p
3dy > r

ffiffiffiffiffi
s2y

q
3dz >

r
ffiffiffiffiffi
s2z

p
then

Update the location of Djþp

for sensor i in Table A:
Update the desired pose, Pd;
for the ith sensor in Table A

with respect to the updated
Djþp:

end if

end if

end for

end for

end while
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