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Application of the Weighted Least 
Squares Parameter Estimation 
Method to the Robot Calibration 
Significant attention has been paid recently to the topic of robot calibration. To 
improve the robot's accuracy, various approaches to the measurement of the robot's 
position and orientation (pose) and correction of its kinematic model have been 
proposed. Little attention, however, has been given to the method of estimation of 
the kinematic parameters from the measurement data. Typically, a least-squares 
solution method is used to estimate the corrections to the parameters of the model. 
In this paper, a method of kinematic parameter estimation is proposed where a 
standard least-squares estimation procedure is replaced by weighted least-squares. 
The weighting factors are calculated based on all the a priori available statistical 
information about the robot and the pose-measuring system. By giving greater weight 
to the measurements made where the standard deviation of the noise in the data is 
expected to be lower, a significant reduction in the error of the kinematic parameter 
estimates is made possible. The improvement in the calibration results was verified 
using a calibration simulation algorithm. 

1 Introduction 
To improve the robot's accuracy means to improve its ability 

to reach consistently a specified pose. Calibration of robots 
has been paid significant attention over the last few years as 
means of achieving better accuracy. Calibration improves ac­
curacy by finding better estimates of the true parameters of 
the kinematic model used to control the robot's motion. 

A calibration procedure involves measurement of the robot's 
pose at a number of locations, estimation of the kinematic 
model parameters, and application of the necessary corrections 
to the robot's controlling software. One of the most commonly 
used methods of kinematic parameter estimation relies on the 
fact that typically the deviation of the nominal parameters 
from the true value is not large. This means that the nonlinear 
relationship between the parameter space and task space can 
be linearized about the nominal values of the parameters. Such 
a model was derived by Wu [1] in 1984 and improved by Hayati 
and Mirmirani [2] in 1985. This model relates the errors in the 
robot's pose to errors in the kinematic parameters through a 
Jacobian-type matrix. Thus, the estimation of the kinematic 
parameter errors is reduced to the solution of the system of 
linear equations. 

If x is a (p x 1) vector of p parameter errors and y is the 
(N,„ x 1) vector containing N„, pose error measurements, then 
the linear model may be written as 

y = Hx + e (1) 
where the (A^ x p) matrix H is the Generalized Jacobian 
matrix and e is an (Nm x 1) vector of random deviations from 
the ideal model. 
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There are always some error sources [as represented by e in 
(1)] which cannot be included in the model. Among these are 
the unmodeled nongeometric errors [3] (e.g., backlash, gear-
transmission errors, link compliance), random joint encoder 
errors and measurement errors. These errors will cause incor­
rect estimation of the kinematic parameters when the system 
in (1) is solved. 

One way to reduce the effect of the unmolded errors is to 
take more measurements so that when the system is solved in 
a least-squares sense, a better estimate of the unknown pa­
rameters is obtained. However, increasing the number of meas­
urements also raises the cost of calibration which limits the 
achievable estimate improvement. 

In this paper, it is shown that, through the application of 
the Gauss-Markov Theorem (GMT) [4], it is possible to further 
improve the parameter estimates without increasing the num­
ber of measurements. 
Gauss-Markov Theorem 

Let 

y = Hx + e (2) 
be a linear model, where y is an (N„, x 1) observable random 
vector, H is an (Nm x p) known mapping matrix of rank p 
< N„„ x is a (p x 1) unknown nonrandom parameter vector, 
and e is an (Nm x 1) vector whose elements are random such 
that 

E(e) = 0 and E(e«r) = V, (3) 
a known positive definite covariance matrix. Then the mini­
mum variance linear unbiased estimator of x, denoted by x, 
is given by 

x ^ H ^ V - ' H r ' H ^ - ' y (4) 
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whose variance V* is given by 

Vi = (H7"V"1H)-1 (5) 

If the rank of H is r < p, an extension of the GMT is 
possible based on the properties of the pseudoinverse of a 
matrix. Thus, in this case, 

x = M+HrV"'y M = H7V~~1H (6) 

where M + designates the pseudoinverse of M. The expressions 
in (4) and (6) imply that if the covariance matrix of the t vector 
is known, then the best estimate is obtained by using the inverse 
of this covariance matrix as a weighting matrix. Thus, more 
weight would be given to the measurements with smaller var­
iance. In this paper we will describe how the covariance matrix 
may be obtained in a calibration and then will demonstrate, 
through a computer simulation, the potential for estimate im­
provement. 

2 Application of the Gauss-Markov Theorem to 
Calibration 

In order to use the GMT for estimating the kinematic pa­
rameters, the V~' weighting matrix has to be obtained. It 
contains the variances of the random component vector e for 
each measurement point. 

Mooring and Pack [5] determined that the randomness of 
the end effector positioning can be attributed to random var­
iation in the robot's joint displacements. It was also found 
that the joint variable errors could be well approximated by 
normal distributions. Using this information, it is possible to 
derive the expression for the variance of the robot's pose meas­
urements as a function of the joint variable values. 

Let nq be an (N x 1) vector (TV being the number of joints 
of the robot) which represents the random noise in the joint 
variables. Let nmk be a (6 x 1) vector of random noise due to 
measurement of the manipulator pose at point k. The elements 
of t in (1) corresponding to measurement point k can be rep­
resented as 

tk = J*n9 + nmk (7) 

where J* is a (6 X N) Jacobian matrix of the manipulator at 
point k. Using (7), the vector t can be assembled for Np meas­
urements, 

~ Jl " 

h 

J/Vp 

n? + 

nmi 

nm2 

nmNP 

Assuming that nq and nm are independent random quantities, 
with E(nq) = 0 and E(nm) = 0, and with known covariance 
matrices 

£(n?n?
r) = E9 and E(nmnf„) = Em (9) 

the required covariance matrix V can be obtained by 

V = £(ee7) = J E ? J r + E m (10) 

Then, either relation in (4) or (6) can be used to find x. 

3 Simulation of the Calibration Process 

A simulation of the calibration [6] was employed to find the 
improvement possible when an ordinary least-squares is re­
placed by a weighted least-squares solution in the estimation 
of the kinematic parameters. This simulation consists of the 
following steps: 

(7) Specify Np measurement points in the workspace of the 
robot by generating Np sets of joint variable values: 

where qtf is a (TV x 1) vector of joint variable values 
for point /. 

(2) Add geometric errors, AqG and ApG, to the nominal 
kinematic model to obtain the simulated real robot's 
kinematic model. AqG is an (N X 1) vector of joint 
variable offsets and ApG is a ({p - N) x 1) vector of 
errors in the constant kinematic parameters. 

(5) For each point, perform a Forward Kinematic (FK) 
solution of the simulated real robot's kinematic model 
while adding the random joint variable error nq to the 
joint variable values: 

f(qN+AqG + nQ,pN + ApG) = TR (12) 

wherepwisa((p - TV) x 1) vector of constant kinematic 
parameters. 

(4) Add measurement errors nmk to TR to determine sim­
ulated pose measurements, TM. 

(5) Determine the pose errors e by finding the difference 
between JM and TN where TN is such that 

/(Q/v. P/v) = TN (13) 

(6) Assemble the system in Eq. (1) from vectors e and 
matrices H for each point. 

(7) Solve the assembled system by either ordinary or 
weighted least-squares method to estimate the kine­
matic parameters. 

(8) Evaluate the parameter estimates by testing the accu­
racy of the estimated model within robot's workspace 
[7]. 

The simulation described above falls into the category of 
Monte Carlo simulations [8]. Normally distributed random 
numbers are added to the joint variable values and to the pose 
error values. The former simulates the finite repeatability of 
the robot and the latter, the finite precision of the pose-meas­
uring device. 

As a result of the test in the step 8 of the simulation pro­
cedure, for each simulation run, a value of the average work­
space position error Ep and orientation error Er are obtained. 
However, since these values are functions of random quantities 
in the simulation, they are random quantities as well. Thus, 
to measure the performance of a particular method, the sim­
ulation is repeated until a statistically significant sample is 
obtained. 

4 Set-Up and Results of the Simulated Calibration 
The kinematic model of PUMA 560 robot [9] was used for 

the simulation tests. The joint variable random errors were 
specified by the standard deviation of 0.007 degrees for joints 
1-3 and 0.002 degrees for joints 4-6. These values resulted in 
a 0.1 mm mean position error at the end effector which equals 
the specified repeatability of the PUMA 560 [9]. 

The measurement points were specified by sets of joint vari­
able values. These values were obtained by generating uni­
formly distributed random numbers within the joint travel 
limits. Only the position measurements were simulated and 
only the position performance of the simulated robot was 
tested. 

A minimum of 10 points (3 measurements each) are required 
to estimate 30 unknown kinematic parameters. Tests compar­
ing the performance of the weighted and ordinary least-squares 
solutions were performed for different numbers of measure­
ment points, Np, (ranging from 12 to 192), and different levels 
of measurement error standard deviation, ame, (ranging from 
0 to 0.1 mm). 

Based on the above simulation parameters, the covariance 
matrices Lg and E„, needed to calculate V were set as 

Lg = diagi&i,4 d ) (14) 
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Fig. 1(b) dE distribution: 24 measurement points 
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Fig. 1(c) dE distribution: 48 measurement points 
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Fig. 1(d) dE distribution: 96 measurement points 
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where 

and 

Fig. 1(e) dE distribution: 192 measurement points 

CT, = <72 = ff3 = 0 . 0 0 7 deg 

<T4 = ff5 = (76 = 0 . 0 0 2 deg 

I,m = diag(a2
me, a1^, . . . ) 

(15) 

(16) 
where Em has the dimensions of (3NP x 3NP). To avoid nu­
merical problems, the actual weighting matrix W used in the 
computations was obtained by normalizing V as 

Nr 

12 

24 
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MEAN 

3.97 

14.20 

21.24 

20.41 

21.71 

SD 

16.31 

15.21 

15.16 
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60.6 

42.8 

54.0 

53.7 

55.4 

% ABOVE 

ZERO 

67.7 

84.4 

91.7 

89.6 

89.6 

3 5 -

30 -

25 -

dE (%) 20 

15 

10 

5 

0 

+ average for each point set 
o overall average 

J I L J L 
20 40 60 80 100 120 140 160 180 

Number of Measurement Points (Np) 

Fig. 2 Relative decrease in position error as a function of the member 
of measurement points 

(17) T T " m a x ' 

where a^ax is the largest diagonal element of V. 
Six sets of Np randomly chosen measurement points were 

tested for each value of Np. For each set of measurement points, 
16 runs of the simulation were repeated to obtain a statistically 
significant sample. The results of the comparison between the 
two least-squares solutions are presented as a relative decrease 
in the average position error after the application of the 
weighted least-squares. Thus, if Ep and Ep are the position 
error values as a result of the weighted and ordinary least-
squares, respectively, then the results are given as 

dE=\QQx^£l (18) 

Therefore, a positive dE means that there was a decrease in 
the residual position error after the calibration due to the use 
of the weighted least-squares instead of the ordinary least-
squares method. 

Figure 1 shows the distribution of simulation runs {Nr) as a 
function of dE for different numbers of measurement points 
(with ame set to zero). Ninety-six samples obtained by per­
forming 16 runs for 6 different sets of points make up the data 
used in each histogram. For each sample, Ep and Ep values 
were obtained by running the same simulation twice, first with 
the weighted and then with the ordinary least-squares solution. 
The same sequence of random numbers was used for both 
simulations to increase the contrast between the two average 
error values, and therefore to reduce the number of runs nec­
essary. Mean values and other statistical data are given in Table 
1. 

For Np equal to 48 points and more, the average improve­
ment was consistently about 20 percent (Fig. 2) with 90 percent 
of runs showing improvement as a result of applying the 
weighted least-squares solution. 

For this simulation, the standard deviation of the measure­
ment error, ame, is constant throughout the workspace. At the 
same time, the variance of the joint variable error's contri­
bution to the pose error varies as a function of the robot's 
pose [Eq. (10)]. Since the measurement variance is added to 
the joint variable noise variance to obtain weights in the V 
matrix, the relative difference between the weights decreases 
in our simulation when the measurement error is increased. 
As a result, the effectiveness of the weighted least-squares also 
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Table 2 Improvement (dE) as a function of measurement error awe{Np 

= 48) 
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Fig. 3 Relative decrease in position error as a function of the meas­
urement error 
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Fig. 4(a) dE distribution: 0.025 mm measurement error {Np = 48) 
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Fig. 4(D) dE distribution: 0.05 mm measurement error (Np = 48) 
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Fig. 4(c) dE distribution: 0.1 mm measurement error {Np = 48) 

would be expected to show a decrease with larger measurement 
error. 

The significance of this effect will depend on the charac­
teristics of the particular robot and the measurement system 
used. Note however that while some measurement devices have 
constant measurement error variance throughout the work­
space (e.g., coordinate measuring machines) this is not the case' 
for others (e.g., theodolite targeting). In the latter case, the 
contribution of the weighted least-squares method may be even 
greater than that obtained here. 

To investigate the effect of increasing measurement error in 
this simulation, tests were conducted where the value of the 

(mm) 

0.0 
0.025 

0.05 

0.1 

MEAN 

21.24 

15.22 

8.00 

2.22 

SD 

15.16 

13.15 

10.16 

5.49 

LOWEST 

-35.7 

-14.5 

-16.7 

-14.8 

HIGHEST 

54.0 

39.9 

28.8 

19.1 

% ABOVE 

ZERO 

91.7 

87.5 

76.0 

64.6 

measurement -error standard deviation ame was increased from 
0 to 0.1 mm while keeping the number of measurement points 
constant at Np = 48. As expected, Fig. 3 shows the decrease 
of the mean improvement from 21.2 percent for the ome equal 
zero to about 2.2 percent for ame of 0.1 mm. Also, Figs. 1(c) 
and 4(a-c) illustrate how with increase of ame the standard 
deviation of the sample data decreases from about 15.2 to 5.5 
(Table 2). This can be explained by the decreasing influence 
of the weighting matrix as the differences between its elements 
decrease. 

Alternative weighting functions of the error variance inverses 
were tried for comparison with a weighting matrix which is 
proportional to the inverse of V. The results were either worse 
or showed no significant improvement which supports the con­
cept of applying the Gauss-Markov Theorem to this problem. 

5 Conclusions 
The Gauss-Markov Theorem was applied to the task of 

kinematic parameter estimation in robot calibration. Simu­
lation demonstrated that a 20 percent decrease in average po­
sition error of the calibrated robot is possible as a result of 
substituting a weighted least-squares for the ordinary least-
squares solution method. 

The magnitude of the expected improvement will be deter­
mined by the particular circumstances of each calibration. The 
greater the variation of the random error variance over the 
measurement points used, the higher benefits can be expected 
from the application of GMT. In addition, the achievable 
improvement will depend on the accuracy of the estimate of 
V. 

The application of the weighted least-squares would be ex­
pected to be particularly useful where a large number of similar 
robots are to be calibrated. Then, it becomes worthwhile to 
gather information about the random error behavior of these 
robots in order to obtain an accurate estimate of the weighting 
matrix. This would lead to the reduction of the required num­
ber of measurements, and thus savings of time and resources. 

References 
1 Wu, C. H., 1984, "A Kinematic CAD Tool for the Design and Control of 

a Robot Manipulator," Int. J. Robotics Res., Vol. 3, No. 1, pp. 58-67. 
2 Hayati, S., and Mirmirani, M., 1985, "Improving the Absolute Positioning 

Accuracy of Robot Manipulators," J. Robotic Syst., Vol. 2, No. 4, pp. 397-
413. 

3 Whitney, D. E., Lozinski, C. A., and Rourke, J. M., 1984, "Industrial 
Robot Calibration Method and Results," Proc. 1984 Int. Computers in Engi­
neering Conf. and Exhibit, Vol. 1, pp. 92-100. 

4 Lewis, T. O., and Odell, P., 1971, Estimation in Linear Models, Prentice 
Hall, NJ, pp. 52-58. 

5 Mooring, B. W., and Pack, T. J., 1986, "Determination and Specification 
of Robot Repeatability," IEEE Int. Conf. Robotics and Automation, Vol. 2, 
Apr., pp. 1017-1023. 

6 Zak, G., Fenton, R. G., and Benhabib, B., 1988, "A Generalized Cali­
bration Method for Robots in Manufacturing Applications," Proc. 1988 Int. 
Conf. on Computer Integrated Manufacturing, Troy, NY, May, pp. 266-272. 

7 Zak, G., 1990, M.A.Sc. Thesis, Department of Mechanical Engineering, 
University of Toronto, Toronto, Canada. 

8 Kleijnen, J. P. C , 1974, Statistical Techniques in Simulation, Marcel Dek-
ker, N.Y. 

9 Unimate PUMA Robot-Volume 1 Technical Manual, 1981, Unimation Inc., 
Tech. Rep. 398H1, Oct. 

Journal of Mechanical Design SEPTEMBER 1994, Vol. 116/893 

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 07/25/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use




