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a b s t r a c t

Parallel Kinematic Mechanisms (PKMs) are well suited for high-accuracy applications. However,
constraints such as end-effector rotation (i.e., platform tilt angle) and configuration-dependent stiffness
often limit their usage. A new six degree-of-freedom (dof) PKM architecture based on a 3� PPRS
topology that addresses these concerns is presented in this paper – specifically, the proposed PKM can
achieve high (end-effector) tilt angles with enhanced stiffness. The mechanism is also compared with
similar three known 6-dof architectures, through which it is shown that the proposed PKM indeed
exhibits higher stiffness relative to these three reference PKMs. The static stiffness is derived using
matrix structural analysis, and the dynamic stiffness is obtained via finite-element analysis. A prototype
of the proposed PKM that was designed and built is presented.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Parallel Kinematic Mechanisms (PKMs) are well suited for high-
accuracy applications, such as machining, due to their superior
stiffness characteristics [1]. However, some of their drawbacks,
such as small workspace coverage and constrained end-effector/
tool/platform rotation range of motion (tilt angle), limit them to
niche applications. For example, while following a continuous path
on a 3D surface, the platform of most PKMs cannot be tilted more
than 901. Furthermore, PKMs which can achieve a 901 tilt angle
often do not satisfy the required stiffness for the application at
hand, such as 5-axis machining.

Several different approaches have been proposed to enhance
the PKMs0 performance. One approach is to design hybrid mechan-
isms, namely, the combination of parallel and serial mechanisms.
Examples include the Ecospeed [1], the Hermes, [2], the TriCenter
[1], and the Metrom machine [1]. Another approach is to incorpo-
rate redundant degrees-of-freedom (dof), namely, to design PKMs
with more joints than required for the task. Such redundancies can
be used to enhance task allocation, via optimization, for example
increasing the platform tilt angle [3–6]. The third approach is
simply to design novel PKM architectures [7], such as the one
proposed in this paper.

Although a large number of novel PKMs have been developed
in the past [8], only a subset of these can achieve a 901 platform tilt
angle – which is one of the fundamental design requirements in
this work. Three well known PKMs that can achieve 901 tilt angle,

while following a path on a 3D surface, all comprise three chains with
prismatic joint that moves on a circular guide: the Alizade mechan-
ism, with a 3�PRPS topology [9], the Eclipse, with a 3�PPRS
topology [10], and the Glozmanmechanism, with a 3�PRRS topology
[7]. Hereafter, these PKMs are referred to as the reference PKMs.

Three other PKMs, similar to the above 6-dof reference PKMs
include: the Behi PKM [11], which is based on a 3�PRPS topology
similar to that of the Alizade mechanism, the Tahmasebi PKM that
has a 3�PPSR topology [12], and the Ben-Horin PKM that has a
3�PPRS topology [13]. The Behi PKM can be configured with a
triangular or a rectangular base, and the Tahmasebi, and Ben-
Horin PKMs0 base joints can be fixed at different locations prior to
operation. However, since each of the joints in these PKMs can
only move along linear paths, their workspace coverage would be
tangibly smaller than the reference PKMs, when designed with
similar dimensions [14].

One may note that, some PKMs with 5-dof or less can also
achieve 901 tilt angle; however, their motions are often coupled.
Furthermore, such low-mobility spatial mechanisms require either
extra passive chains (e.g., [15,16]), or specific geometrical relations
between the joints (e.g., [17]), which may result in geometrical
interference, leading to limited workspace coverage [18].

The objective of this paper is, thus, to present a new 3� PPRS
PKM architecture developed and built in our laboratory. The
proposed PKM exhibits a 901 tilt angle and its static stiffness and
dynamic stiffness are tangibly better than those of the three
reference PKM architectures, namely, the Eclipse, the Alizade
PKM, and the Glozman PKM. The primary application for our
proposed novel mechanism is its use as a high-accuracy meso-
Milling Machine Tool (mMT) [19]. Design of such machines with
the required stiffness is a challenge due to their scaled-down
structures.
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2. Proposed parallel kinematic mechanism

The proposed 3� PPRS PKM is shown in Fig. 1. The mechanism
consists of three kinematic chains, each chain consists of a circular
guide of radius, Rb, on which two prismatic joints (pairs) are
mounted. The first prismatic joint, which moves on a circular
guide, is, herein, referred to as the curvilinear prismatic joint. The
second prismatic joint, which moves in radial direction with
respect to the circular guide, is, herein, referred to as radial
prismatic joint. It is mounted on the curvilinear prismatic joint.
The global coordinate system, Of g, is positioned at the center of the
circular guide. The position of the curvilinear prismatic joint of the
ith chain is denoted as Ai ¼ ½Aix Aiy Aiz �T , (i¼1–3). The position
of the radial prismatic joint is denoted as Ci ¼ ½Cix Ciy Ciz �T .

Three links of fixed length L connect the radial prismatic joints
to the mobile platform through passive revolute and spherical
joints, respectively. The angular travel of the revolute joints are
denoted as φi, and each revolute joint is rotating about an axis that
is tangential to the circular guide. The Cartesian positions of the
spherical joints are denoted as Pi ¼ ½ Pix Piy Piz �T .

The joint-space generalized coordinates of the active joints are
defined by the vector Q ¼ ½ θ1 θ2 θ3 d1 d2 d3 �T ; where θi
represents the curvilinear prismatic joint travel, and di represents
the radial prismatic joint travel, respectively. A moving Frame, fEg,
is attached to the center of the platform, where its z-axis is normal
to the platform plane. The vector Xpc ¼ ½ xpc ypc zpc α β γ �T
represents the position and orientation (pose) of Frame fEg, with
respect to the Global Frame fOg. α, β, and γ are the Euler angles for
the ZYZ transformation-order matrix. The angles α and β are
selected according to the orientation of the platform normal,
which is required for the task. Since γ is redundant for 5-axis
machining, it can be optimized so that the PKM configuration with
the highest stiffness is chosen.

2.1. Kinematics

The positions of the spherical joints, Pi (i¼1–3), in task-space
coordinates can be obtained from the pose of the platform Frame,
fEg, as

Pi ¼ ½ xpc ypc zpc �T þREPi; ð1Þ

where Pi is the position of the ith spherical joint given in task-
space coordinates, R is the rotation matrix of the platform with
respect to the Global Frame, and EPi is the position of the ith
spherical joint with respect to the platform Frame, fEg.

The joint-space coordinates of the PKM, in terms of the position
of the spherical joints, are expressed as

θi ¼ tan �1ðPiy=PixÞ; ð2Þ

φi ¼ sin �1ðPiz=LÞ; and ð3Þ

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2�Piz

2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPix

2þPiy
2ÞU

q
ð4Þ

Given Eqs. (1)–(4), the positions of the curvilinear and radial
prismatic joints can be obtained as

Ai ¼ Rb cos θi Rb sin θi 0
h iT

; ð5aÞ

Ci ¼ di cos θi di sin θi 0
h iT

U ð5bÞ

In direct kinematics, the platform pose is obtained from the set
of active joint variables, di and θi. The platform pose is determined
as follows: (i) the spherical joints0 positions are determined from
the set of active joint variables, and consequently (ii) the platform
pose is obtained from the passive spherical joints0 positions.
Considering the geometrical constraint on the link length, L, the
location of the spherical joints can be expressed as

Pi ¼
ðdi�L cos φiÞ cos θi
ðdi�L cos φiÞ sin θi

L sin φi

2
64

3
75U ð6Þ

The passive joints variables, φi, which are required in order to
obtain Pi, can be determined from the geometrical constraints on
the platform shape. Assuming the platform is an equilateral
triangle, the geometrical constraint on the platform side length,
l, can be expressed as

jjPi�Pjjj ¼ l2 ; i; j¼ 1;2;3 ; ia jU ð7Þ

Combining Eqs. (6) and (7), the following set of three equations
is derived:

½ðdi�L cos φiÞ cos θi�ðdj�L cos φjÞ cos θj�2þ

½ðdi�L cos φiÞ sin θi�ðdj�L cos φjÞ sin θj�2þ

½L sin φi�L sin φj�2 ¼ l2 ; i; j¼ 1;2;3 ; ia j: ð8Þ

where the unknown variables are φi.
The set of equations, represented by (8), can be converted into a

system of polynomial equations in term of ti, by substituting the
following trigonometric identities:

ti ¼ tan
φi

2

� �
; cos φi ¼

1�t2i
1þt2i

; sin φi ¼
2ti

1þt2i
: ð9Þ

The resulting non-linear system has four unique solutions for
t1, t2, and t3. A more detailed solution of the above equations can
be found in Ref. [13]. Finally, once the spherical joints0 positions
are obtained, the platform center point position, CP, is derived:

CP ¼ ∑3
i ¼ 1Pi

3
; ð10Þ

as well as the platform orientation, OR:

ORx ¼
P1�PC

l=
ffiffiffi
3

p ; ð11Þ

ORy ¼ P2�P3

l
; ð12Þ

ORz ¼ ORx � ORy: ð13Þ

Fig. 1. Kinematic notation for the proposed PKM.
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2.2. Dynamics

The dynamic equations of motion of the proposed PKM can be
obtained using Lagrange0s formulation and the principle of energy
equivalence. The principle of energy equivalence states that the
dynamic behavior of a generic PKM is equivalent to the combined
dynamics of all serial chains and the dynamics of the moving
platform [20–22]. The approach given here for the derivation of
dynamic equations extends our preliminary work reported in Ref.
[20], which involves disassembling the PKM at the platform0s
spherical joints. The resulting system consists of three serial chains
and a moving platform. Since no external forces are applied on the
passive joints, our objective is to derive the equations of motion of
the proposed PKM in terms of the active joint coordinates, Q , only.

Let us define qi ¼ ½ θi di φi �T as the vector of joint-space
coordinates for the ith kinematic chain (i¼1–3). Utilizing
Lagrange0s method, the dynamics of each serial chain is obtained
as

Mqi €qiþCqiþgqi ¼ τqi; ð14Þ

where Mqi is the inertia matrix, Cqi, and gqi are the vectors of
centrifugal/Coriolis terms, and the gravity vector, respectively. τqi
is the vector of generalized forces at the joints. Evaluating the time
derivative of the spherical joint coordinates given in Eq. (6) yields

_pi ¼W i _qi; ð15Þ
where W i is a 3� 3 matrix, which transforms the joint-space
velocities of the ith serial chain, _qi, to the velocity of the associated
spherical joint, _pi. The spherical joint velocity, on the other hand,
can be obtained, given the platform geometry, its angular velo-
cities, and its center point linear velocities, which are denoted as
Vpc ¼ ½ _xpc _ypc _zpc Ωx Ωy Ωz �T . The velocity of the platform
ith spherical joint can be expressed as

_pi ¼U iVpc; ð16Þ
where U i is a 3� 6 matrix, which transforms Vpc, to _pi. Utilizing
the kinematic expressions (15) and (16), and the principle of
energy equivalence, the dynamics of the entire PKM is expressed
as

ðMp
_VpcþCpþgpÞþ ∑

3

i ¼ 1
ðMi

_VpcþCiþgiÞ ¼ τpc : ð17Þ

where Mp is the inertia matrix of the platform, Cp, and gp are the
vectors of centrifugal/Coriolis terms, and the gravity vector of the
platform, respectively. Mi is the inertia matrix of the ith serial
chain. Similarly, Ci and gi are the centrifugal/Coriolis terms, and
the gravity vector. Detailed matrix expressions for Mi , Ci, and
gi are as follows:

Mi ¼ ðZiÞTMqiZi ; ð18Þ

Ci ¼ ðZiÞTMqi ðWÞ�1 d
dt
ðU iÞ

� �
ðZiÞ�1 _qi

þðZiÞT Mqi
d
dt
ðWÞ�1

� �
Zið Þ�1 _qiþCqi

� �
; and ð19Þ

gi ¼ ðZiÞTgqi ; ð20Þ

where Zi is the transformation between the generalized velocities
of the ith serial chain to the platform angular and center point
linear velocities as

_qi ¼ ZiVpc ¼W i
�1U iVpc U ð21Þ

In Eq. (17), τpc is the vector of generalized forces acting on the
PKM, which contains the vector of external forces, denoted by τext ,
and the vector of the transformed generalized forces, denoted by

τqi, as follows:

τpc ¼ τext:þ ∑
3

i ¼ 1
ðZ iÞTτqi ; ð22Þ

where τext acts on the platform, and τqi acts on the PKM joints. All
the dynamic matrices and vectors in Eq. (17) are represented with
respect to task-space coordinates.

The obtained task-space dynamic model of the PKM, as given in
Eq. (17) is transformed to active joint-space coordinates. To this
end, the geometric Jacobian of the PKM, JG, which relates the
active joint-space velocities to the platform center point linear
velocities and platform angular velocities, is obtained as follows:

JG _Q ¼ Vpc U ð23Þ
The geometric Jacobian is obtained in a two-step process. In the

first step, the analytical Jacobian, J, is derived by evaluating the
time derivative of the kinematic relations between the task-space
variables, Xpc , and the active joint-space variables Q :

_Q ¼ J�1 _Xpc: ð24Þ
In the second step, the geometrical Jacobian, JG, is obtained by

JG ¼HJ; ð25Þ
where H is the ZYZ Euler angles transformation matrix that relates
the angular rate of change corresponding to the analytical Jacobian
to the angular velocities of the task-space variables corresponding
to the geometric Jacobian [23]. Detailed expression for H is given
by

H¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 � sin α cos α sin β

0 0 0 0 cos α sin α sin β

0 0 0 1 0 cos β

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð26Þ

Using the geometric Jacobian matrix, the transformed dynamic
equations of the proposed PKM to active joint-space coordinates
are expressed as

MQ
€QþCQ þgQ ¼ τQ ; ð27Þ

where MQ is the inertia matrix of the PKM, CQ , and gQ are the
vectors of centrifugal/Coriolis terms, and the gravity vector of the
PKM, respectively. The matrix expressions of the final dynamic
equations of motion in terms of active joint-space coordinates are

MQ ¼ JG
TMtJG ; ð28Þ

CQ ¼ ðJGÞTMt
d
dt
ðJGÞVpc þðJGÞTCt ; and ð29Þ

gQ ¼ ðJGÞTgt ; ð30Þ
where

Mt ¼Mpþ ∑
3

i ¼ 1
Mi; Ct ¼ Cpþ ∑

3

i ¼ 1
Ci; gt ¼ gpþ ∑

3

i ¼ 1
gi: ð31Þ

τQ is the active-joint space vector of generalized forces applied
on the joints of the PKM, as follows:

τQ ¼ ðJGÞTτpc: ð32Þ

3. PKM kinematic and stiffness analysis

In this section, the proposed PKM is analyzed in terms of its
platform tilt angle, singularities, and stiffness.
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3.1. Platform tilt angle

A PKM0s tilt angle is typically defined as the maximal reachable
angle of the platform over a spherical surface, while being tangent
to its surface. The angle is measured from the z-axis, as shown in
Fig. 2. The spherical surface is discretized herein into a finite
number of points, and the platform center point ability to reach
them is evaluated through kinematic simulation of the proposed
PKM, while taking into account geometrical interferences. The
dimensions/constrains of the PKM, which are incorporated into
the kinematic simulations, are presented in Table 1.

In our study, the link length of the proposed PKM was varied to
determine the dimension, for which the platform could reach at
least 901 tilt angle. Some analysis examples of platform tilt angle
versus the radius of the workpiece sphere are shown in Fig. 3.
It should be noted that although the link length of 196 mm would
lead to a better tilt angle achievement for the proposed PKM, a
216 mm link was employed in this paper in order to achieve a fair
comparison with other mechanisms, as will be further discussed in
Section 4.

3.2. Singularities

The kinematic singularities of PKMs are typically defined with
respect to the Jacobian matrix, J, and classified into three types
[18]. Evaluating the time derivative of the kinematic relations of
the PKM, one can obtain:

Jq _Q ¼ Jx _Xpc; ð33Þ

where Jq and Jx are the matrix of the time derivatives of the joint-
space variables, and the matrix of the time derivatives of the task-
space variables, respectively. The Jacobian can be expressed as

J ¼ Jx
�1Jq U ð34Þ

For the proposed PKM, the closed-form solution for J �1 can be
derived. Hence, the PKM singularities are classified according to

the Jacobian determinant, ΔJ �1, as follows:

ΔJ�1 ¼ 71 ΔJq ¼ 0 Type 1 singularity

ΔJ�1 ¼ 0 ΔJx ¼ 0 Type 2 singularity

8<
: ð35Þ

Type 1 singularity (or, serial singularity) results in a non-zero
velocity vector, _Q , for which the platform does not move. Type
2 singularity (or parallel singularity) leads to a non-zero
motion, _Xpc, for which the joint velocities, _Q , are zero. Type
3 singularity occurs when both Type 1 and Type 2 singularities
are present at the same time.

Note that since the Jacobian matrix is not homogeneous in
terms of units, its determinant value may not have a physical
meaning when it is at a singular configuration (ΔJ �1 ¼ 0 or1 7).
The Jacobian matrix terms are non-homogenous when (i) a
combination of joints (i.e., revolute and prismatic) are used and
(ii) the PKM has translational and rotational dof [24]. Therefore,
the “closeness” of a 6-dof PKM configuration to singularity can be
only realized with respect to the distribution of Jacobian determi-
nant over the workspace. For example, a configuration is consid-
ered to be singular when the Jacobian determinant is high
compared to determinants of other configurations.

Simulations that analyze PKM configurations at discretized
points over the workspace can identify singularities. This can be
achieved through calculation of the Jacobian determinant, or
through evaluation of the Condition Number (CN) [18,23].

Fig. 4 shows values of 1=ΔJ�1 of the proposed PKM at discrete
task-space locations on the surface of a 4 mm radius hemispherical
workpiece. As can be noted, the graph contains a circular area
at about r¼2 mm, which is the result of higher/lower 1=ΔJ�1

values. This indicates that the associated configurations are close
to singularity. The singularities shown in Fig. 4 are of Type
2 singularity.

Fig. 2. Hemispherical workspace/workpiece.

Table 1
Dimensions of the proposed PKM.

Design parameter Proposed PKM

Base radius (Rb) 162 mm
Platform radius (Rp) 18 mm
Link Length (L) 216 mm
Curvilinear prismatic joint’s range of travel (θi) Continuous 3601
Radial prismatic joint’s range of travel (di�Rb) 0�65 mm
Revolute joint’s range of travel (φi) 5�701
Spherical joint’s range of travel 7701
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Fig. 3. The platform tilt angle of the proposed PKM for different link lengths.

Fig. 4. Distribution of 1=ΔJ�1 over the hemisphere.
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3.3. Stiffness

The accuracy of a PKM is directly related to its static and
dynamic stiffness. Static stiffness indicates the resistance of the
structure to deflection when the loading conditions are not time
dependent. Dynamic stiffness, on the other hand, indicates the
magnitude of the vibration response of the mechanism in the
presence of time-varying loading. Both the static stiffness and the
dynamic stiffness are highly related to the PKM architecture, and
to the specific PKM configuration [1]. Thus, it is important to
identify PKM architectures that combine on the one hand the
ability to achieve 901 tilt angle, while following a path on a 3D
surface, and on the other hand maintaining high stiffness at the
platform center point.

3.3.1. Static stiffness
Several methods have been proposed for the analytical model-

ing of static stiffness of PKMs [25–28]. These methods consider the
contribution of each chain separately, and by combining the joints0

boundary conditions, the overall stiffness matrix of the PKM is
constructed. The motivation in developing these methods has
been to provide a quick evaluation of static stiffness in relation
to the PKM configuration. It should be noted that, in our simula-
tions, the platform is required to be tangent to the hemispherical
surface at every discretized point on its surface, as shown in Fig. 2.
Therefore, the tool orientation can be defined by two Euler angles.
Since the third angle, which is the roll angle about the tool axis, is
redundant for the task, an optimization can be performed to
determine the angle that leads to the configuration with the
highest stiffness [29].

The static stiffness of the PKM at the center point of the
platform is obtained herein using the Matrix Structural Analysis
(MSA) method [30]. The reason for choosing the MSA approach is
that, unlike Finite Element Analysis (FEA), MSA can quickly
evaluate the stiffness distribution within the workspace. The
structural components that are considered in the modeling of
the PKMs are the joints and the links. The following gives an
overview on the procedure for evaluating the static stiffness:

1. The PKM0s links are modeled as beam elements, with each
element consisting of two nodes. The elements allow for
bending deformations in the two lateral directions with
respect to the beam orientation as well as axial deforma-
tion along the beam. The stiffness matrix, K i, of the ith
element is represented with respect to its local frame. The
matrix is assembled from four sub-matrices as shown in Eq.
(36):

K i ¼
K i

11 K i
12

K i
21 K i

22

" #
; ð36Þ

where K i
jk (j,k¼1,2) are the stiffness matrices of the first

and second nodes of element i.
2. The link stiffness matrix is transformed from the link local

frame to the Global Frame, fOg, using the rotation matrices
between the frames, Fig. 5.

3. The transformed stiffness matrix of each mechanism chain,
KT , is assembled according to the boundary conditions on
each link as shown in Fig. 6.

KT ¼
K1

11 K1
12 0

K1
21 K1

22þK2
11 K2

12

0 K2
21 K2

22

2
664

3
775;

KT ¼

K1
11 K1

12 0 0

K1
21 K1

22 0 0

0 0 K1
11 K2

12

0 0 K2
21 K2

22

2
666664

3
777775; KT ¼

K1
11 0 0

0 K2
11 K2

12

0 K2
21 K2

22

2
664

3
775

4. Linkage constraints between links are considered through
matrices that describe the kinematic relations between the
nodes on the two sides of the joint. These constraints
are assembled into a matrix, Ak, according to the nodes
numbers.

5. Evaluating the extremum of the total potential energy
under the kinematic constraints using Lagrange multipliers,
leads to the following set of equations:

KT AK
T

AK 0

" #
ΔX
λM

" #
¼ F

0

� �
; ð37Þ

where, λM is the Lagrange multipliers vector, F is the force
vector applied on the nodes, and ΔX is the vector of the
displacements of the nodes dof. The displacements of all
the chain0s nodes can be determined from Eq. (37).

6. The stiffness matrix of the mechanisms is constructed in a
similar way to Step (4), using the three chains stiffness
matrices obtained in Step (5). All four PKMs compared in
this paper are modeled according to the model shown in
Fig. 7 where the links are represented by Nodes 1–3. The
platform elements are modeled as rigid connections, and
the associated Nodes are 4–7. Subsequently, the static
stiffness of the mechanism is evaluated at Node 7, which
is the platform center point.

Static stiffness has been shown to be related to the Jacobian
matrix [31], hence, simplified stiffness indices based on the CN
have been proposed [32]. However, the applicability of these
indices is limited to Jacobian matrices that are homogeneous in
terms of units. Hence, the stiffness of a 6-dof PKM cannot be
evaluated only based on its Jacobian matrix. In order to overcome
these challenges, a statistical framework for the analysis of the
stiffness is presented here:

1. Determine the stiffness along x, y, and z axes at a large number
of discretized check points (317 in our simulations), preferably
over a hemispherical surface, while the platform is tangent to
the surface. Since the PKM has 6-dof, at each check point there
are infinite possible PKM configurations depending on the
platform roll angle, i.e., the rotation about the axis normal to
the platform. Moreover, referring to side-milling of a groove,

Fig. 5. Coordinate notation for the proposed PKM static stiffness model.
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the milling force acting on the tool tooth has three compo-
nents: Ft, the force in the direction of the cutting, Fr, the force in
radial direction to the tool, and Fa, the axial force. The cutting
forces oscillate with respect to the cutter location. However, for
the given trajectories, the part can be oriented with respect to
the Cartesian axis so that the maximal forces along the
trajectory (on the yz plane) will be applied normal to the feed
direction FN, along the x-axis. Thus, the redundant dof is used
for maximizing the stiffness along the x-axis. It should be noted
that the static stiffness of the mechanism is not evaluated
within the neighborhood of singularities. Such incidents are
filtered based on the CN values.

2. Determine the arithmetic mean and standard deviation of the
stiffness values calculated in Step (1).

The links for all PKMs were modeled as tubes with outer
diameter of 19 mm, and inner diameter of 14 mm. The material
selected for the structure of the PKMs was steel, AISI 1018. The
static stiffness of the joints was taken to be 3 N/μm, [33] for the
stiffness of ultrasonic piezo actuators. In the following simulations,
the location of the workpiece with respect to the base is the same
for all link lengths.

The mean and variance values of the stiffness components, Kxx,

Kyy, and, Kzz, as a function of the link lengths are shown in Table 2.

3.3.2. Dynamic stiffness
The dynamic stiffness analysis is conducted on the proposed

PKM to predict the displacement of the center point of the

platform when the PKM is subjected to dynamic loading. Herein,
the dynamic stiffness of PKMs at a given configuration is defined
as the ratio of the amplitude of the applied oscillating forces, to the
amplitude of the vibration at the center point of the platform.
Unlike the static stiffness, which is only related to the stiffness
matrix of the PKM, the dynamic stiffness of the PKM also depends
on the mass of its structural components, and the equivalent
damping constant.

The dynamic stiffness matrix of a PKM structure, KD, at the
center point of the platform can be expressed as follows [33]:

KD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK�Mω2Þ2þðBωÞ2

q
; ð38Þ

where M, B, and K are the structural mass matrix, equivalent
damping constant matrix, and static stiffness of the PKM, respec-
tively. ω is the frequency of the external force applied at the center
point of the platform. When the frequency of the applied forces is
equal to one of the natural frequencies of the PKM, the dynamic
stiffness reaches its minimum, causing the displacement at the
platform center point to reach its maximum [34]. Thus, it is
necessary to obtain the minimum dynamic stiffness magnitudes,
which can be used as an index for the accuracy of the PKM during
operation.

The dynamic stiffness of a PKM at a given frequency can be
obtained by inverting the Frequency Response Function (FRF). In
this paper, the dynamic stiffness, which takes into account the
contribution of the PKM linkages, is calculated by examining FRFs
results obtained from FEA.

The Cartesian FRFs of the PKM are calculated using a commer-
cial FEA software package, ANSYS. Harmonic analysis is conducted
on the PKM being at its home configuration with the chains
located in tri-axi-symmetric positions. The home configuration is
the PKM posture that allows its platform center point to touch the
north pole of the hemisphere while the platform is tangent to its
surface. The joints0 bearings are modeled using sliding contact
between the pin and the housing. The equivalent damping ratio
for the PKM structure is assumed to be 1%. This damping ratio
accounts for the interfacial slip damping in the contacting surfaces
such as revolute and sliding joints, as well as the material damping
of the PKM.

3.3.3. Simulations
Simulations were conducted as three sets. In the first set, a

sinusoidal force of 1 N magnitude was applied to the platform
center point along the x-axis. The harmonic force represents loads
created during milling operations [34]. The Cartesian displacement
of the platform center point is captured along the x-axis. The
Cartesian xx component of the FRFs of the proposed PKM as a
function of the link lengths are shown in Fig. 8(a). In the second
simulation set, the force and displacement are being applied and
captured along the y-axis (Fig. 8(b)). In the third set, the force and
displacement are being applied and captured along the z-axis
(Fig. 8(c)).

The results show a general trend of increasing the peak
amplitude of the FRFs when the link length increases. This implies
that the minimum dynamic stiffness decreases as the link length
increases.

Fig. 6. Stiffness matrix assembly: (a) two beams with rigid connection, (b) two beams connected by a revolute joint, and (c) two beams connected by a revolute joint when
the first beam is fixed to the base.

Fig. 7. Schematics of the overall proposed PKM.

Table 2
Mean and variance values of PKMs0 static stiffness distribution.

Stiffness Statistical analysis Link length [mm]
196 216 236

Kxx [N/μm] Mean 5.74 5.69 5.28
Variance 0.24 0.38 0.39

Kyy [N/μm] Mean 5.49 4.73 4.21
Variance 0.22 0.33 0.33

Kzz [N/μm] Mean 8.77 5.43 3.92
Variance 1.18 0.21 0.10

H. Azulay et al. / Robotics and Computer-Integrated Manufacturing 30 (2014) 369–378374



4. Comparative analysis

In this paper, we compare the stiffness of four 6-dof PKMs that
are based on a three-chain topology. Fig. 9(a)–(d) illustrates the
schematics of these PKMs, where the last figure is our new
proposed PKM.

All the PKMs0 architectures are modeled using similar geome-
trical parameters and constraints – each chain contains two active
joints. The first prismatic joint, M1, moves along a circular guide,
which is mounted on the base. The second joint, M2, is mounted
on M1. In addition, each chain includes a revolute joint and a
spherical joint, which are passive. The latter is connected to the

moving platform. The primary difference between the proposed
PKM and the reference PKMs lies in the positioning of M2.

The dimensions of the PKMs were chosen as close as possible to
each other while achieving at least 901 tilt angle, as shown in
Table 3. In specific cases, when it was not possible to have both
criteria applied simultaneously, the condition for 901 tilt angle was
preferred. For example, the Glozman PKM workspace coverage is
sensitive to link-length change – where only with a link length of
(2� ) 130 mm, which is the closest to the dimension of the other
PKMs links, that the PKM could reach the 901 tilt angle. Also, the
link length of the Alizade PKM is defined at the middle of the
prismatic joint travel range.

4.1. Static stiffness

The procedure used in Section 3.3.1 for calculating the repre-
sentative static stiffness of the proposed PKM is utilized here for
comparing the four PKMs0 architectures. Table 4 summarizes the
means and variances of the static stiffness of the PKMs. Funda-
mental two-tailed, null-hypothesis analysis clearly shows that the
proposed PKM has better stiffness properties than those of the
reference PKMs, beyond a significance level of 99%.

The mean stiffness of the proposed PKM is higher than the
mean stiffness of the Alizade PKM in all directions. This is due to
the prismatic joints0 stiffness along their direction of motion. In
the case of the Alizade PKM, the joints reduce the stiffness along
the links0 axes, which mainly affects its stiffness along the z-axis.
The proposed PKM is stiffer than the Eclipse mechanism along the
x and y axes. The Eclipse vertical prismatic link in each chain acts
as a cantilever beam reducing the stiffness along the x and y axes.
Along the z axis, the Eclipse is stiffer than the proposed PKM,
where the lower stiffness of the proposed PKM is related to its first
link, which acts as a cantilever beam about the z axis. The mean
stiffness of the proposed PKM is also higher than that of the
Glozman PKM. In the Glozman PKM, the first link acts as a
cantilever beam, which affects the stiffness along all axes, depend-
ing on the orientation of these links.
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Fig. 8. Cartesian FRFs of the proposed PKM as a function of link length: (a) FRFxx ,
(b) FRFyy , and (c) FRFzz .

Fig. 9. Compared PKMs: (a) Eclipse, (b) Glozman PKM, (c) Alizade PKM, and (d) Proposed PKM.

H. Azulay et al. / Robotics and Computer-Integrated Manufacturing 30 (2014) 369–378 375



4.2. Dynamic stiffness

The dynamic analysis of the proposed PKM presented in
Section 3.3.2 is repeated here for all four PKMs with the dimen-
sions specified in Table 3.

Fig. 10(a) shows the magnitudes of the FRF of the PKMs along
the x-axis, for a force that is applied in the same direction. Figs. 10
(b) and 10(c) show the FRFs of the PKMs in the y and z axes, for
forces applied in the y and z axes, respectively. The same trends
observed for the static stiffness, as given in Section 4.1, are noted
here for the dynamic stiffness. The proposed PKM has the highest
dynamic stiffness along the x and y axes, and the Eclipse and
Alizade mechanisms have higher dynamic stiffness along the
z-axis. Similar to the explanation given in Section 4.1, the dynamic
stiffness of each PKM is decreased along the axis, on which
the first links act as cantilever beams. For the Alizade mechanism,
the chains are constructed from one prismatic kinematic coupling
that connects the base and the platform. Hence, it does not include
a link that acts as a cantilever beam, and it is stiffer along the
z-axis.

The minimum dynamic stiffness values of the four PKMs are
summarized in Table 5. Similar to the static stiffness, Table 5
shows that the proposed PKM architecture exhibits enhanced
dynamic stiffness characteristics along the x- and y-axes.
It should be noted, however, that although some differences in
correlation between the static and dynamic stiffness exist, these
can be attributed to the difference in the models used. For
example, contrary to the dynamic stiffness, joint compliance has
been incorporated in the static stiffness simulations. Also, for the
static stiffness, the PKM configurations were optimized so
as to achieve the highest stiffness along the x-axis whereas no
optimization has been performed for the dynamic stiffness
analysis.

Table 3
Dimensions of the PKMs.

Design parameter Proposed PKM Eclipse PKM Alizade PKM Glozman PKM

Base radius (Rb) 162 mm 162 mm 162 mm 162 mm
Platform radius (Rp) 18 mm 18 mm 18 mm 18 mm
Link length (‖Pi�Ci‖) 216 mm 216 mm 216 mm 130 mm
Curvilinear prismatic joint’s range of travel (θi) Continuous 3601 Continuous 3601 Continuous 3601 Continuous 3601
Radial prismatic joint’s range of travel (di�Rb) 65 mm 65 mm 65 mm �
Revolute joint’s range of travel (φi) 5�701 5�701 5�701 5�701
Spherical joint’s range of travel 7701 7701 7701 7701
Platform tilt angle 941 981 961 961

Table 4
Mean and variance values of PKMs0 static stiffness distribution.

Stiffness Statistical
analysis

Proposed
PKM

Eclipse
PKM

Alizade
PKM

Glozman
PKM

Kxx [N/μm] Mean 5.691 4.450 3.686 2.433
Variance 0.349 0.237 0.028 0.020

Kyy [N/μm] Mean 4.710 3.986 3.247 2.038
Variance 0.316 0.100 0.103 0.053

Kzz [N/μm] Mean 5.690 7.360 3.601 5.487
Variance 0.228 0.004 0.108 0.292
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Fig. 10. FRF for all PKMs along the (a) xx, (b) yy, and, (c) zz directions.

Table 5
Minimum dynamic stiffness of all PKMs at home configuration.

Minimum dynamic
stiffness

Proposed
PKM

Eclipse
PKM

Alizade
PKM

Glozman
PKM

Kxx [N/mm] 0.178 0.044 0.047 0.015
Kyy [N/mm] 0.161 0.041 0.071 0.021
Kzz [N/mm] 0.066 0.567 2.08 0.005

Fig. 11. 9-dof redundant reconfigurable 3×PPPRS RmMT.

H. Azulay et al. / Robotics and Computer-Integrated Manufacturing 30 (2014) 369–378376



5. Meso-milling machine prototype

A Reconfigurable meso-Milling Machine Tool (RmMT) proto-
type, shown in Fig. 11, was designed and built in our laboratory.
A redundant reconfigurability approach was chosen for the devel-
oped RmMT [35]. Namely, all the required dof are incorporated
into the machine, and reconfigurability is utilized through the
locking/unlocking of the redundant dof.

The 9-dof RmMT is based on the proposed PKM, and its
topology is denoted as 3�PPPRS. Namely, it consists of three
identical chains, where each chain is attached to a stage that
moves along a curvilinear guide. The curvilinear guide and stage
unit chosen for the RmMT is the HCR 15Aþ60/150R made by THK
ltd. This stage can be moved to a desired location and then locked.
Two FB075 linear stages, which are actuated by HR8 ultrasonic
motors, manufactured by Nanomotion, are placed on top of the
curvilinear stage. The structural components such as the base,
links, and platform of the prototype are made from AISI 1018 steel.

The first linear stage moves tangentially with respect to the
curvilinear guide, and the second linear stage, which is mounted
on top of the first one, moves in radial direction. A revolute joint
connects the linear stage with a fixed length link. The link is, then,
connected on its other side through a Seiko Hephaist SRJ008C
spherical joint, to the moving platform.

It should be noted that current commercially available sphe-
rical joints (e.g., Seiko Hephaist spherical joint) cannot achieve
7701 range of travel noted in Table 2. However, some examples
for joints with large range of motions have been proposed in the
academic literature [6], which can be used in meso-Milling
applications. Thus, the 7701 used throughout the paper should
be considered only for comparison between the mechanisms.

The built prototype was used as a test bed for integrating sub-
components such as spindle, sensors and actuators. For example, a
simple commercial spindle was incorporated into the center of the
mobile tool platform, allowing for further study of the interaction
between the spindle and the RmMT. In terms of human interface,
the architecture of the RmMT allows for quick and easy access to
the tool and workpiece. In addition, the mechanism is constructed
such that the tool is supported from below, which allows for less
interference between the spindle and the mechanism.

To further study the structural dynamic behavior of the proto-
type, Experimental Modal Analysis (EMA) was performed to obtain
the FRFs of the reconfigurable 3�PPPRS RmMT prototype. An FEA
simulation based on the detailed CAD model of the built prototype
was performed. Fig. 12 compares the FRFs obtained from the
experiments and those obtained from the FEA model of the

prototype for home configuration along x and z-axes. It is noted
that the resonance frequencies and the FRF amplitudes of the
experimental data are close to those obtained from the FEA model.

6. Conclusions

In this paper, a new 6-dof PKM architecture based on a
3�PPRS topology was presented and its kinematics and dynamics
were formulated. The platform tilt angle and stiffness of the
proposed PKM were analyzed as a function of link length, and it
was shown that the platform can tilt more than 901. The static and
dynamic stiffness of the proposed PKM was compared with three
known PKMs, which can also attain more than 901 tilt angle.
A statistical method was used to calculate the static stiffness
distribution over the workspace, obtained from an analytical
model. The dynamic stiffness of the PKMs was obtained via FEA.
The results of both comparisons clearly indicate that the proposed
PKM has superior static and dynamic stiffness.

Acknowledgment

The authors acknowledge the financial support of the NSERC
Strategic Network – CANRIMT, and Promation Ltd., Toronto,
Canada for funding this research.

References

[1] Weck M, Staimer D. Parallel kinematic machine tools – current state and
future potentials. CIRP Ann – Manuf Technol 2002;51:671–83.

[2] Altuzarra O, Martín YS, Amezua E, Hernández A. Motion pattern analysis of
parallel kinematic machines: a case study. Robot Comput-Integr Manuf
2009;25:432–40.

[3] Y. Wang, W.S. Newman, Workspace analysis of the ParaDex robot – a novel,
closed-chain, kinematically-redundant manipulator. In: Proceedings of the
IEEE International Conference on Robotics & Automation, San Francisco, CA,
USA; 2000. p. 2392–7.

[4] J. Kotlarski, H. Abdellatif, B. Heimann, Improving the pose accuracy of a planar
3RRR parallel manipulator using kinematic redundancy and optimized switch-
ing patterns, in: Proceedings of the IEEE international conference on robotics
and automation; 2008. p. 3863–8.

[5] Robin V, Sabourin L, Gogu G. Optimization of a robotized cell with redundant
architecture. Robot Comput-Integr Manuf 2011;27:13–21.

[6] Valasek M, Zicha J, Karasek M, Hudec R. Hexasphere – redundantly actuated
parallel spherical mechanism as a new concept of agile telescope. Adv Astron
2010;2010:1–6.

[7] Glozman D, Shoham M. Novel 6-dof parallel manipulator with large work-
space. Robotica 2009;27:891–5.

[8] Gogu G. Structural synthesis of parallelrobots part 1: methodology. Springer, P.
O. Box 17, 3300 AA Dordrecht, The Netherlands; 2008.

[9] Alizade RI, Tagiyev NR, Duffy J. A forward and reverse displacement analysis of
a 6-dof in-parallel manipulator. Mech Mach Theory 1994;29:115–24.

[10] Jongwon K, Chongwoo P, Sun Joong R, Jinwook K, Jae Chul H, Changbeom P,
et al. Design and analysis of a redundantly actuated parallel mechanism for
rapid machining, robotics and automation. IEEE Trans 2001;17:423–34.

[11] Behi F. Kinematic analysis for a six-degree-of-freedom 3-PRPS parallel
mechanism. IEEE J Robot Autom 1988;4:561–5.

[12] Tahmasebi F, Tsai LW. On the stiffness of a novel six-dof parallel minimani-
pulator. In: ISR; 1995.

[13] Ben-Horin R, Shoham M, Djerassi S. Kinematics, dynamics and construction of
a planarly actuated parallel robot. Robot Comput-Integr Manuf 1998;14:
163–72.

[14] Azulay H, Hawryluck C, Mills JK, Benhabib B. Configuration design of a meso-
milling machine, in: Proceeding of the 23rd CANCAM Vancouver; 2011.

[15] Zhang D, Gosselin CM. Kinetostatic modeling of N-dof parallel mechanisms
with a passive constraining leg and prismatic actuators. ASME J Mech Des
2001;123:375–81.

[16] Gan D, Dai JS, Caldwell DG. Constraint-based limb synthesis and mobility-
change-aimed mechanism construction. ASME J Mech Des 2011;133:
051001–9.

[17] Kong X, Gosselin CM. Type synthesis of 3-dof translational parallel manip-
ulators based on screw theory. ASME J Mech Des 2004;126:83–92.

[18] Merlet JP. Parallel Robots, 2nd ed., Springer, INRIA, Sophia-Antipolis, France;
2006.

0
0.00015

0.0003
0.00045

0.0006

0 100 200 300 400 500

FR
F x

x
[m

/N
]

Frequency [Hz]

0
0.0001
0.0002
0.0003
0.0004
0.0005

0 100 200 300 400 500

FR
F z

z 
[m

/N
]

Frequency [Hz]

Experimental
FEA

Experiment
FEA

Fig. 12. Experimental and FEA data of the prototype along (a) x-axis, and (b) z-axis.

H. Azulay et al. / Robotics and Computer-Integrated Manufacturing 30 (2014) 369–378 377

http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref1
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref1
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref2
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref2
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref2
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref3
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref3
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref4
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref4
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref4
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref5
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref5
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref6
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref6
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref7
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref7
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref8
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref8
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref8
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref9
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref9
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref10
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref10
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref10
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref11
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref11
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref11
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref12
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref12
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref12
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref13
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref13


[19] Xiang Z, Hongya F, Zhenyu H, Yazhou S. 5-Axis micro-milling machine tool for
machining complex 3D meso-scale parts. In: Proceedings of the international
conference on mechatronics and automation; 2009. p. 4283–8.

[20] Mahmoodi M, Le Y, Mills JK, Benhabib B., An active dynamic model for a
parallel-mechanism-based meso-milling machine tool. In: Proceedings of the
23rd Canadian congress of applied mechanics (CANCAM), Vancouver, Canada;
2011.

[21] Abdellatif H, Heimann B. Computational efficient inverse dynamics of 6-dof
fully parallel manipulators by using the Lagrangian formalism. Mech Mach
Theory 2009;44:192–207.

[22] Khalil W, Ibrahim O. General solution for the dynamic modeling of parallel
robots. In: Proceedings of the IEEE international conference on robotics and
automation, New Orleans, LA, USA; 2004. p. 3665–70.

[23] Sciavicco L, Siciliano B. Modeling and control of robot manipulators. 2nd ed..
New York: McGraw-Hill Companies; 2000.

[24] Merlet JP. Jacobian, manipulability, condition number, and accuracy of parallel
robots. ASME J Mech Des 2006;128:199–206.

[25] Klimchik A, Pashkevich A, Caro S, Chablat D. Stiffness matrix of manipulators
with passive joints: computational aspects. Anglais 2012;28:1–4.

[26] Chanal H, Duc E, Ray P. A study of the impact of machine tool structure on
machining processes. Int J Mach Tools Manuf 2006;46:98–106.

[27] Majou Fe, Gosselin Ce, Wenger P, Chablat D. Parametric stiffness analysis of
the orthoglide. Mech Mach Theory 2007;42:296–311.

[28] Xu Q, Li Y. An investigation on mobility and stiffness of a 3-dof translational
parallel manipulator via screw theory. Robot Comput-Integr Manuf
2008;24:402–14.

[29] Aginaga J, Zabalza I, Altuzarra O, Nájera J. Improving static stiffness of the
parallel manipulator using inverse singularities. Robot Comput-Integr Manuf
2012;28:458–71.

[30] Deblaise D, Hernot X, Maurine P. A systematic analytical method for PKM
stiffness matrix calculation. In: Proceedings of the 2006 IEEE international
conference on robotics and automation, Orlando, Florida, USA; 2006. p. 4213–9.

[31] Gosselin C. Stiffness mapping for parallel manipulators. Anglais 1990;6:
377–82.

[32] Wu J, Wang J, Wang L, You Z. Performance comparison of three planar 3-dof
parallel manipulators with 4-RRR, 3-RRR and 2-RRR structures. Mechatronics
2010;20:510–7.

[33] He J, Fu ZF. Modal analysis. Woburn, MA: Elsevier Science; 2001.
[34] Cheng K. Machining dynamics: fundamentals, applications and practices.

London: Springer; 2009.
[35] Katz R. Design principles of reconfigurable machines. Int J Adv Manuf Technol

2007;34:430–9.

H. Azulay et al. / Robotics and Computer-Integrated Manufacturing 30 (2014) 369–378378

http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref14
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref14
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref14
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref15
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref15
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref16
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref16
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref17
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref17
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref18
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref18
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref19
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref19
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref20
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref20
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref20
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref21
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref21
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref21
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref22
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref22
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref23
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref23
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref23
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref24
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref25
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref25
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref26
http://refhub.elsevier.com/S0736-5845(13)00110-5/sbref26

	Comparative analysis of a new 3timesPPRS parallel kinematic mechanism
	Introduction
	Proposed parallel kinematic mechanism
	Kinematics
	Dynamics

	PKM kinematic and stiffness analysis
	Platform tilt angle
	Singularities
	Stiffness
	Static stiffness
	Dynamic stiffness
	Simulations


	Comparative analysis
	Static stiffness
	Dynamic stiffness

	Meso-milling machine prototype
	Conclusions
	Acknowledgment
	References




