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Target-Motion Prediction for Robotic Search and
Rescue in Wilderness Environments

Ashish Macwan, Goldie Nejat, Member, IEEE, and Beno Benhabib

Abstract—This paper presents a novel modular methodology
for predicting a lost person’s (motion) behavior for autonomous
coordinated multirobot wilderness search and rescue. The new
concept of isoprobability curves is introduced and developed,
which represents a unique mechanism for identifying the target’s
probable location at any given time within the search area while
accounting for influences such as terrain topology, target physiol-
ogy and psychology, clues found, etc. The isoprobability curves are
propagated over time and space. The significant tangible benefit
of the proposed target-motion prediction methodology is demon-
strated through a comparison to a nonprobabilistic approach, as
well as through a simulated realistic wilderness search scenario.

Index Terms—Lost-person motion prediction, multirobot coor-
dination (MRC), wilderness search and rescue (SAR) (WiSAR).

I. INTRODUCTION

S EARCH AND RESCUE (SAR) has been commonly clas-
sified according to the environment within which it takes

place and the nature of the target’s motion. Urban SAR (USAR)
refers to activities amid collapsed structures and is concerned
with locating stationary survivors within a bounded environ-
ment [1], [2]. Marine applications address search in potentially
boundless environments, typically precluding consideration of
terrain-difficulty issues [3], [4]. Wilderness SAR (WiSAR)
refers to locating lost persons moving in unbounded inland
environments with varying and often complex terrains [5], [6].
This presents rescuers with a significantly different prob-
lem than that for the two aforementioned applications. The
main challenge is to locate a moving unobservable (i.e., non-
trackable) target, whose state at any given time is unknown,
but can be predicted through the use of probabilistic informa-
tion. As part of our continuing research efforts on multirobot
coordination (MRC) for autonomous WiSAR [7], this paper
focuses on the development of a novel target (motion) behavior
prediction methodology, using probability theory.
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The literature on target-behavior prediction for WiSAR is
sparse. Earlier methods have commonly dealt with only a
limited number of aspects, assuming that both the initial
a priori probability distribution for the target’s location and the
probabilistic description of how the target moves are given in-
puts (e.g., [3]–[5], [8], and [9]). Our proposed generic method-
ology, on the other hand, utilizes the new innovative concept
of isoprobability curves to represent the probable location of
the target at any given time. This representation mechanism ex-
plicitly and dynamically incorporates the influences of critical
aspects that need to be considered, such as a growing search
area, terrain topology, target physiology and psychology, etc.

A. Target Prediction in Search Theory

Numerous methods have been developed for the optimal
allocation of search effort to locate a stationary or moving target
[3], [8], [10]–[12]. An element common to these methods is
the use of probability theory in the prediction of the mobile
target’s location, which is represented through a continuous or
discretized probability distribution, propagated over time based
on a stochastic process [3], [4].

Search-theory works have mainly utilized theoretical gener-
alized search optimization (GSO) techniques for the optimal
allocation of the search effort [10], [11]. Target prediction
is addressed via a stochastic process, assumed to be a given
input to the adopted GSO technique. However, no guidance is
provided as to which stochastic process is applicable for a given
search scenario. As part of the research on human–robot team
formation in WiSAR scenarios in [5], a random-walk model is
presented for deriving the initial probability distribution for the
location of the missing person. It involves random perturbations
to the speed and direction of the target to model drift in the
target’s motion.

Examination of missing-person incidents in the wilderness
areas of Alberta, Canada, was carried out in [6]. The Wakeby
distribution [13] was used to characterize the data for differ-
ent categories of wilderness user. This distribution provides a
function for computing percentiles of crow’s flight distances in
planning the boundaries of a search.

In [3], a marine SAR scenario is addressed, involving a
floating target being carried by winds and waves. Starting
with an initial given target-location probability density function
(PDF), a prediction stage is applied to propagate the PDF using
a Markov motion model. This work was extended in [8] to
include a means of reconfiguring the search boundaries. In [9],
the Bayesian probabilistic framework in [3] is used to also
incorporate the effect of imperfect sensors.
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A search planning system used by the U.S. Coast Guard
is discussed in [4]. Given the estimates on the location and
time of the distress incident, the system uses a Monte Carlo
simulation, combined with oceanographic models for target
drift computation, to build an initial PDF for target location and
propagate it. Bayesian updating is also used to reflect “negative
information” obtained from unsuccessful searches. The output
is a sequence of time-phased PDFs giving the likely target
positions over the time period of interest.

In [14], a method is proposed for constructing the a priori
target-location PDF, as well as the transition matrix (assuming
a first-order Markov process). The method requires that expert
opinion be initially available to help in generating the PDF but
allows for incorporating the influence of terrain features.

B. Robotic SAR

In the USAR domain, the design of specialized robots to
address the challenges of this particular application is prevalent
(e.g., [15], [16]). Research works focusing on teleoperation of
robots and formation of effective mixed human–robot teams
(e.g., [17] and [18]), as well as centralized (e.g., [19]–[21])
versus decentralized (e.g., [22]–[24]) control issues, have also
been reported. Some of our recent work has also contributed
to the design of sensing and control systems for real-time 3-D
mapping and landmark identification (e.g., [25]–[27]).

For WiSAR, decentralized approaches for coordinating
teams of robots have been reported. For example, the research
in [5] investigates the use of multiple unmanned aerial vehicles
for aerial imagery of the search area to aid human searchers.
In [28], the focus is on searching for stationary targets within a
bounded, albeit unknown, 2-D environment. The work in [29]
compares various MRC mechanisms for automated SAR, but
also for stationary targets.

In these and other works (e.g., [30] and [31]), although
current interest and efforts toward the use, as well as the
increased autonomy, of robots are apparent, search strategies
are not specifically addressed. Those that do are often incom-
patible with WiSAR. For example, the search method in [32]
addresses a visibility-based version of the pursuit–evasion
problem, assuming an unlimited searcher-vision range in a
bounded environment with a moderate distribution of obstacles.
It was modified in [33] to accommodate multiple searchers
and a searcher field-of-view model that more closely resembles
that of a physical robot but still maintained the other limiting
assumptions in [32]. Namely, current MRC methods do not
utilize target prediction based on probabilistic information.
However, they indicate clear recognition of the advantages
that an autonomous multirobot solution, with target-behavior
prediction, could bring to SAR.

II. PROBLEM STATEMENT

This paper addresses the problem of online prediction of a
lost subject’s behavior for the search component of a ground
WiSAR scenario. It is based on representing the target’s loca-
tion in the form of a PDF that needs to be updated online over
time and space. As the primary constraint, it is assumed that,

Fig. 1. Overall WiSAR problem.

during the search, the target is not trackable, as this is typically
the case in real-life scenarios.

A typical WiSAR scenario would proceed as follows: At a
certain point in time, a notification of a missing person arrives,
who is hereby referred to as the target—his/her last known
position (LKP) is given, along with the time at which he/she
was at this position, t = 0. The search agents (robots) are then
transported to the region and arrive at time t = Ths (i.e., the
target’s “head start”)—the optimal number of robots, and their
initial deployment, must be determined a priori. Basic topo-
graphic information of the region and elementary knowledge of
the personal characteristics of the target, such as age, clothing,
provisions, purpose of visit, health, experience, and familiarity
with the area, are assumed to be known.

Fig. 1 shows the three major tasks that comprise the overall
WiSAR problem with centralized control, which we wish to
automate. Foremost is obtaining accurate probabilistic informa-
tion about the target for behavior prediction. This task primarily
involves generating a probability distribution for the location of
the target within the search area and updating this distribution
over time and space. The prediction must incorporate all the
relevant sources of influences on the target’s motion. The four
influences, detailed hereinafter, that particularly need to be
addressed are terrain, target physiology, target psychology, and
clues left behind.

Robot deployment and robot-motion planning, which follow,
depend on target-behavior prediction. Robot deployment must
be conducted in accordance with the probability distribution for
target location at the start of the search, so that search effort is
proportioned according to the relative likelihoods of target pres-
ence in the search area at that time. Robot-motion planning, on
the other hand, is a dynamic process that must keep updating the
search task assignment based on new information. It requires
the target-behavior-prediction module to propagate the proba-
bilistic target-location information over time and space. Upon
allocation, the robots autonomously execute their tasks—path
planning and real-time navigation. The aforementioned process
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is cyclic and continues until either the target is sighted or a
maximum search time is reached.

A. Terrain

Terrains in WiSAR scenarios may vary from rugged moun-
tainous regions to dense forests and smoother rolling hills.
Thus, the terrain topography would influence the target’s mo-
tion, and this effect must be reflected in the probabilistic
prediction of the target’s location. The search terrain could
also include nontraversable obstacles, such as large rocks or
boulders, deep bodies of water, swamps, ravines, etc., which
may be a priori known or unknown to the search team.

B. Psychology

Pertinent literature on human psychology [34], [35], as well
as data on past search incidents [6], [36], indicates that lost per-
sons often employ predictable strategies to reorient themselves.
For example, a lost hiker, although relatively unfamiliar with
the terrain topology, may at least be aware of the existence
and general direction of a popular destination (e.g., a well-
known camp site or a parking lot) and could move toward it.
Other reorientation strategies include searching high ground,
wandering, trail running, signaling, etc. [34].

C. Physiology

Target-behavior prediction would also be influenced by phys-
iological issues, such as fatigue setting in over time. For ex-
ample, a particular PDF assumed for the target’s speed may
need to be scaled down in a controlled manner over time that
is consistent with the decrease in forward speed experienced by
the target as he/she gets tired. Changes in weather conditions
may also cause predictable physiological responses.

D. Clues

An evolving source of information critical to the search
process is the clues left behind by the target. Examples include
articles of clothing belonging to the target, the time and location
of a target sighting by an eyewitness, etc.

III. PROPOSED SOLUTION: A MODULAR

TARGET-BEHAVIOR-PREDICTION METHODOLOGY

Developed within the framework of our research is the novel
key construct of isoprobability curves to predict target (motion)
behavior. These curves are generated and propagated based
on information about the target’s behavioral descriptors, the
topography of the search terrain, and other factors.

A. Isoprobability Curves

A lost target can move in any direction θ ∈ [0◦, 360◦] from
his/her last LKP (x0, y0), achieving a trajectory that is difficult
to predict. Instead of trying to predict the exact target trajec-
tories, we choose to establish bounds on the target’s location
using conservative estimates of his/her motion. In particular,
as the worst case motion scenario, we assume that the target

Fig. 2. Isoprobability curves. (a) Side view: a single ray. (b) Top view: locus
of points.

may travel in a straight line radially outward from the LKP at
its average speed, yielding a maximum distance from the LKP.
Such an estimate ensures that the predicted and utilized PDF
for the target’s location would have the best chance of bounding
the target.

Since the exact data about the lost individual may not be
available at the time of the search, probabilistic information
about his/her peer group must be utilized. These data could be
in the form of a probability distribution p(ν, θ), ν ∈ �, ν ≥ 0,
for all the mean speeds ν that individuals within the particular
peer group can have. For a WiSAR scenario, one particular type
of data gathered includes the percentiles of distances from the
LKP where targets from past search incidents were found [6],
[36], [37]. These data can be used to generate a mean-target-
speed PDF, referred to hereinafter as the “nominal” mean-
target-speed PDF. For the purposes of coordinating a search,
however, a target-location PDF p(r, θ, t) is required, for the
radial distance r, from the LKP and the given point in time t.
This PDF can be derived by multiplying the nominal mean-
target-speed PDF by the given time t.

In order to construct the probabilistic representation of target
location, we first establish multiple rays, which are possible
directions of conservative target motion emanating from the
LKP. A target-location PDF, which is a 1-D distribution at
this stage, can be calculated for any given point in time and
then overlaid onto each established ray individually. Herein, a
bounded normal distribution is assumed to define the nominal
mean-target-speed PDF and, hence, the target-location PDF
derived from it, along any given ray.

Fig. 2(a) shows the side view of one ray (bold arrow) where
the position along the ray is given by the variable r, r ∈ �,
r ≥ r0. The derived target-location PDF for the current time
t = T is overlaid onto this ray. The ray, and thus the target-
location PDF, originates from the LKP [r0 = 0 in Fig. 2(a)]
and extends up to the upper limit of this PDF [r = 100 units
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in Fig. 2(a)]. Thus, the r = 100 units point represents the
maximum distance that the target can travel in the given time T ,
as dictated by the target-location PDF for this time.

One may subdivide a ray at key cumulative-probability
points p% for the probable locations of the target r = RT,p%

along this ray for time T , using the overlaid target-location PDF
[Fig. 2(a)]. Given that the normal distribution is unimodal and
symmetric about its mean μr, the mean coincides with the 50%
cumulative-probability point RT,50%, and the upper limit for
the given time T is taken to be RT,100%.

Based on the normal-distribution assumption for p(ν, θ) with
a mean μν,θ and a variance σν,θ along any given ray, one can
define p(r, θ, t) on that ray through a transformation of variable
ν to r for r = r0 + ν · t, where r0 = ‖(x0, y0)‖. Since ν is a
random variable, r is simply a linear combination of random
variables, so that p(r, θ, t) is also a normal distribution with
mean and variance of

μr,θ,t = E(r) = E(r0 + ν · t) = E(ν) · t + r0 = μν,θ · t + r0

(1)

σ2
r,θ,t = σ2

r =σ2
(r0+ν·t) = t2 ·σ2

ν,θ (2)

respectively.
The cumulative-probability points established on each ray

incorporate probabilistic target-location information for each
separate scenario (direction) of target motion independently. To
estimate this probabilistic information for all the intermediate
directions and to form a continuous representation over the
search area, the loci of all common points among the estab-
lished rays are connected through interpolation. These form a
set of continuous 2-D closed contours over the search area,
one for each cumulative percentage value considered, and are
referred to hereinafter as isoprobability curves. It is important
to note that, once the isoprobability curves are constructed, the
volume of probability bounded by each contour will not be the
same as the cumulative probability of the corresponding con-
tour. However, given our conservative target-motion estimate,
the contour positions must remain as computed from the loci
of the common points along the rays to ensure that the 100%
contour fully bounds the appropriate search area for that time.

Fig. 2(b) shows a set of isoprobability curves for eight rays,
where the PDFs along the rays are assumed to be the same,
yielding circular curves. When the PDFs along rays differ, due
to terrain conditions or other factors, equal cumulative-
probability points along the rays could be combined into (non-
circular) isoprobability curves by fitting (for example, cubic)
spline segments. The cumulative-probability points are also
referred to, herein, as control points.

Since, in general, the target is continually in motion, it is
insufficient to search areas only once and move on. Rather, it
would be necessary to reinvestigate previously searched areas,
as well as to increase the search area with time. Thus, as
search time passes, continued possible target motion outward
from the LKP necessitates the propagation of the isoprobability
curves based on the probable target motion along each ray. It
entails multiplying the mean-target-speed PDF corresponding
to each ray by the total time passed since the target was at the

LKP. Namely, based on the aforementioned derivation, at time
t + Δt, the new mean and variance would respectively be

μr,θ,(t+Δt) =E(r) = E [r0 + ν · (t + Δt)]

=E(ν) · (t + Δt) + r0

=μν,θ · (t + Δt) + r0, (3)

σ2
r,θ,(t+Δt) =σ2

r = σ2
[r0+ν·(t+Δt)] = (t + Δt)2 · σ2

ν,θ. (4)

The more time that passes between curve updates, the more
outdated and inaccurate the predictions become. It can be
expected that this too may negatively impact the chances of
finding the target. Available computational resources also in-
fluence how frequently and quickly curves can be updated.

B. Incorporating the Effect of Terrain

Varying terrain topography would influence target motion
and thus must be accounted for in the determination of the
isoprobability curves. Two factors are considered here: 1) diffi-
culty of terrain and 2) a priori known obstacles. The former
considers the impact of the difficulty in traversing relatively
larger scale land formations. The latter considers smaller scale
obstructions, such as large rocks or boulders, which the target
may navigate around.

1) Terrain Difficulty: In order to consider terrain difficulty
in the determination of isoprobability curves, the nominal
mean-target-speed PDF along each ray needs to be scaled
according to the instantaneous surface slope. The calculations
begin with two basic assumptions: A topographic map of the
area is available, and the LKP of the lost person is also known.

The terrain is first discretized by overlying a grid of cells onto
the search area. Each cell is assigned its representative average
terrain height value, yielding a height map. Different terrains
were generated for our simulations using the Terragen Classic
scenery-generation software [38]. Next, the terrain slope along
each ray, for the portion of the terrain from the LKP up to any
given position along the ray, is determined using a linear least
squares fit to ground-elevation measurements.

Since the position of each control point along a ray depends
on the corresponding mean target speed and time, an iterative
process is needed to determine its exact location. Namely,
although, at a given time, one could calculate the control point
along the ray using the nominal mean target speed, the terrain
traversed due to this distance traveled must be considered
to scale the nominal mean speed to incorporate the terrain’s
influence on target motion. Scaling the mean speed would, in
turn, change the distance traveled, and the terrain influence
would have to be recomputed for this new travel distance.
This process must be iterated until the difference between two
successive computed travel distances is less than or equal to a
user-specified maximum difference threshold value.

Step 1) Estimate the radial distance dk_est of the kth con-
trol point k ∈ [1, Ncp] computed along the ray un-
der consideration, using the corresponding nominal
mean target speed, and determine the coordinates of
the control point Pk_est = (xk_est, yk_est).
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Step 2) Determine the height measurements (from the
height map) at regular distances along a straight line
representing the distance traveled by the target from
the LKP up to the current estimated control point.

Step 3) Calculate the average slope of the portion of the
terrain lying along the direction vector from the
LKP up to the current estimated control point using
the sample terrain height measurements obtained in
Step 2).

This average terrain slope is obtained through a
linear-regression-line fit to the height data points,
using the slope b of the resultant line to compute an
angular measure of the average terrain slope sought
after

ĥ = a + br (5)

where ĥ is the estimated terrain height value given
by the fitted regression line; r is the radial distance
ri, i ∈ [1, Nh], at which a given terrain height mea-
surement hi, i ∈ [1, Nh], is taken; and {a, b} denotes
the estimated values for the regression coefficients,
respectively.

The slope value is converted into an angular value
γ = tan−1(b), which represents the estimate of the
average angular slope over which the target could
have traveled in the direction of the given ray up to
the estimated position of the control point.

Step 4) Use the computed average terrain slope to determine
the speed scale factor corresponding to the control
point being determined.

The determination of how much the mean speed
of the target scales with different terrain slopes may
be made by referring to empirical data [39], [40].
Herein, a linear relationship between average ground
surface slope angle γ and speed scale factor q is
assumed. This relationship is obtained by stipulating
a maximum incline angle γmax,inc and a maximum
decline angle γmax,dec that the target can handle,
as well as the corresponding speed scale factors
qmax,inc and qmax,dec, respectively. In addition, an
incline of γ = 0◦ is given a scale factor of q = 1

q(γ)=
{

qdec(γ)=m1γ+b1, γmax,dec≤γ<0◦

qinc(γ)=m2γ+b2, 0◦≤γ≤γmax,inc
(6)

where m1 and m2 are parameter constants of the two
portions of the linear relationship, respectively.

If the computed slope exceeds the stipulated
bounds, the corresponding terrain is considered to
be nontraversable by the target. The iterative process
thus ceases, and the control point being computed
remains at its current position Pk_est.

Step 5) Scale the corresponding nominal speed, using the
computed speed scale factor qk, and update the esti-
mate of the radial distance dk_est of the kth control
point k ∈ [1, Ncp]. With speed having changed, the
corresponding radial distance estimate of the control
point must be changed as well. This relocates the

TABLE I
SUMMARY OF COMPUTATIONS FOR ITERATION 1

OF THE EXAMPLE PROBLEM

control point along the ray and represents an im-
proved estimate.

Step 6) Compare the updated control point radial distance
estimate to the prior one used at the start of the
current iteration, and determine whether another
iteration is necessary

100% × (|dk_est_NEW − dk_est|/dk_est) ≤ Δdk,max . (7)

If the aforementioned difference is greater than
the threshold Δdk,max, then the answer is “yes.” The
new radial distance estimate just obtained is set as
the current radial distance estimate (i.e., set dk_est =
dk_est_NEW), and the process returns to Step 2).
Otherwise, the iterative process is stopped, and the
current estimate for the radial distance dk_est_NEW

is accepted.

The aforementioned approach is illustrated through an ex-
ample: A hiker is lost in a rugged region that does not allow
for aerial surveying. The initial search region considered en-
compasses a 3000 m × 3000 m area. The LKP of the lost
person is located at the center of this area (0, 0). The terrain
is discretized by overlying a 513 × 513 grid array. Each cell
is assigned the average height of the terrain enclosed within
the cell, yielding a height map. The mean-target-speed PDF is
a bounded normal distribution. Ten isoprobability curves are
constructed for the elapsed search time of t = 300 s, utilizing
36 uniformly distributed rays with an interray spacing of 10◦.

Table I summarizes the computations for the first iteration of
the proposed process—a sample set of calculations carried out
to determine the position of the control point corresponding to
the 10% contour for the 40◦ ray.

For the second iteration, dk_est = dk_est_NEW = 28.5 m,
Pk_est = (21.8 m, 18.3 m), bk and γk remain −0.4292 and
−23.2◦, respectively, so that qk and Vk,scaled also remain
1.1936 and 0.0950 m/s, respectively; thus, dk_est_NEW =
dk_est = 28.5 m. Since the percentage difference between
dk_est_NEW and dk_est is less than the 1% threshold value,
the stopping condition in Step 6) is satisfied, and no further
iterations are required.

Fig. 3 shows the resulting set of isoprobability curves for the
t = 300 s time point. In subsequent control-point computations,
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Fig. 3. Complete isoprobability curves for t = 300 s.

Fig. 4. Isoprobability curves modified to reflect the effect of obstacles.

when the isoprobability curves need to be updated, only the
additional distance that would be traversed by each control
point, between its previous and new positions, needs to be
considered when computing the terrain slopes and scale factors
in Steps 1) to 4). Thus, the “LKP” is replaced with the “current
control-point position” in these steps.

2) Known Obstacles: The effect of a priori known obstacles
is reflected through the changes in the shapes of the rays. The
approach used herein is to “wrap” any ray that intersects an
obstacle around its boundary, favoring the side leading to the
shortest path around the obstacle as a conservative estimate.
Neither the original path length of the ray nor the positions of
the control points along the length of the ray are altered (i.e.,
the ray is not stretched). Hence, if the variable s ∈ [0, smax]
represents the curve length along the ray, starting from s = 0
at the LKP and going up to s = smax at the control point on
the 100% contour, then the length of the original straight ray
l = smax and the curve length values sk corresponding to the
positions of each of the control points all remain the same
before and after wrapping the ray. The wrapping of rays mimics
the slowing down of the outward progress of the target. Fig. 4
shows this approach for circular obstacles.

It is important to note that only the positions of the control
points defined are changed to accommodate the a priori known
obstacles. The interpolated curve segments between the con-
trol points are not influenced by the obstacles directly. As a
result, these curve segments may pass through the obstacles
(Fig. 4). However, such occurrences are not to be construed
as a representation problem since it is the rays that model the

different target-motion scenarios. The curve segments provide
guidance for robot search movements, but only in those regions
unobstructed by obstacles. When isoprobability curves intersect
obstacles, the robots in those areas would inevitably need to
engage in some type of obstacle-avoidance maneuver until the
obstacle is circumvented.

C. Incorporating the Effect of Human Psychology

One aspect of psychology that may be accounted for is a
preferred general direction of target travel [6]. The influence
of such a travel direction can be addressed via the application
of an appropriate scale factor to the PDF of a ray specifically
chosen to align with the probable destination point. Namely,
the target-location PDF along the ray in this direction would
receive a higher scaling factor relative to other directions.
Search commanders in real-life WiSAR scenarios often use
their past experience and knowledge of the target at hand to as-
sign relative likelihoods to different regions of the search area.
Thus, a consensus among multiple such experienced personnel
may be used to establish the relative likelihoods of different
directions and, in turn, to obtain the scale factors.

For example, let us consider a linear relationship between
directional likelihood and scale factor. In particular, two con-
trasting directions can be identified and assigned a relative
likelihood: a “low” and a “high.” The high-likelihood direction
αhi can be designated to be Qh times more likely than the low-
likelihood direction αlo. Thus, a probability distribution, having
a linear probability model, can be established for the possible
angular directions of travel by the target. This linear function
would give the probability density value p(α) for a specified
ray direction angle α and would range over all the possible
directions, from −180◦ to +180◦.

Given the derived function p(α), the scaling factor q(αi)
for any given ray αi can be obtained by taking the probability
density ratio relative to that of the high-likelihood direction

q(αi) = p(αi)/p(αhi). (8)

The scale factor q(αi) is applied to the nominal mean-
target-speed PDF of ray αi. Thus, all the nominal speeds
corresponding to the contours are multiplied by this scale factor,
which changes the radial distances of each of the corresponding
control points accordingly. Scaling the rays in this way has
the effect of proportionally “shrinking” the search area away
from the lower likelihood directions, so that the searchers spend
more time searching the regions closer to the high-likelihood
direction. As an example, Fig. 5 shows a scenario where αhi =
0◦, αlo = −180◦, and Qh = 3.

D. Incorporating the Effect of Clues Found

Clues can be abstracted into two general types: those that
only give positional information about the target and those that
give both a confirmed position and the time at which the target
was at that location. The effect of clues is addressed by taking
the coordinates of the newly found clue to be the new LKP.
The isoprobability curves are then reconstructed based on the
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Fig. 5. Isoprobability curves modified to reflect the effect of a likely travel
direction.

Fig. 6. Isoprobability curve relocation and reconstruction process when a clue
is found.

elapsed time since the target had dropped the clue. For clues that
only indicate position, conservative speed and path estimates
can still be made to estimate the time at which the clue was
dropped and thereby estimate the additional time for which the
target would have been moving.

For example, if, at some time t = T1, a clue is found without
any information on its drop time t = Td, an estimate Td_est is
calculated (Fig. 6): First, it is assumed that the target has moved
on a straight-line path from the latest LKP position (x0, y0)
to the newly found clue position (xc, yc). This constitutes a
conservative path estimate, yielding a travel distance of dest =
|(xc, yc) − (x0, y0)|. Next, a conservative target-speed estimate
is made by assuming that he/she moved along this path at the
maximum possible mean speed Vt_max, as defined by the upper
bound of the nominal mean-target-speed PDF. Consequently,
the isoprobability curves are reconstructed for the current time
t = T1, where the position of the new LKP becomes (xc, yc),
and the curves propagate out from this point to a distance
corresponding to a time increment of t = Trem = T1 − Td_est.
Since the isoprobability curves stretch out further for clues
found closer to the LKP (since Trem will be larger), as opposed
to clues found further out, the target is still ensured to be
contained within the bounds of the 100% contour. This accounts

Fig. 7. Modularity of the proposed target-behavior prediction method.

for the inability to know the actual order in which clues without
time information are dropped.

There also exists the issue of uncertainty associated with any
clue found as to its relevance to the target being sought. The
conservative-approach philosophy applied so far in addressing
other issues in our method may also be applied here. In par-
ticular, two sets of isoprobability curves can first be created:
one for the case where the clue is certainly not associated with
the target (i.e., maintain the current LKP and propagate the
curves as usual) and one for the case where the clue is known
for certain to belong to the target (i.e., update the curves as
described previously and shown in Fig. 6). A truly conservative
approach would then be to take the union of the curves for these
two individual cases as the final set of isoprobability curves, so
that both possibilities are considered.

E. Modularity of the Proposed Solution Method

The proposed methodology is modular in that the iso-
probability curve concept and the search strategies devised
can account for any influences (Fig. 7). Alterations to the
nominal mean-target-speed and target-location PDFs, through
the application of scale factors, account for influences at the
isoprobability-curve-construction level. Modifications to the
basic robot-motion strategy, in the form of specific detour
motions conducted each time that a given set of conditions is
satisfied, address influences at the search-strategy implementa-
tion level.

IV. PRELIMINARY SEARCH STRATEGY

A WiSAR strategy was devised to aid in the robustness
analyses to follow, as well as to demonstrate our proposed
target-motion prediction methodology. This strategy should be
considered just as a means for utilizing the isoprobability curves
and not as a proposal.

The devised search method guides a team of robots using
a basic motion strategy augmented with specific detour ma-
neuvers to account for obstacles, clues, and possible shelter-
seeking psychological behavior displayed by the target.
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Fig. 8. Basic motion strategy.

A. Initial Robot Deployment

A lack of bias in the relative importance given to each
isoprobability curve must be ensured. The relative curve density
in different regions of the search area would then control
the distribution of the search effort. The number of isoprob-
ability curves can be determined based on the number of
robots, ensuring that each curve is assigned with at least one
robot.

B. Basic Robot Motion

A basic robot-motion strategy was devised to achieve a bal-
anced search effort. It allows the robots to explore the interme-
diate regions between adjacent contours while still maintaining
robot distribution in accordance with the isoprobability curves.

The basic motion strategy (Fig. 8) requires each robot to
perform the following: 1) to start on its assigned curve; 2) to
move in a direction tangent to it in a clockwise manner at a
predetermined constant speed for a fixed short amount of time;
3) to change direction to move on a new line tangent to an
imaginary circle centered at the current LKP, with a radius equal
to the distance from the LKP to the current position of the robot;
and 4) when the isoprobability curves are propagated outward,
to return to its respective curve via the shortest path to restart
the basic motion strategy.

C. Obstacle Avoidance

When a robot encounters an obstacle, a priori known or
unknown, a detour strategy is implemented to circumnavigate
it. For an a priori known obstacle, the robot traces the obstacle
boundary on the side leading to the shortest path around it,
which is determined in its entirety before implementing the
circumnavigation motion.

For an a priori unknown obstacle, the robot extrapolates its
current trajectory through the obstacle to determine the point
of emergence on the opposite side and then traces the obstacle
boundary until this point of emergence is reached. Once the
obstacle has been circumnavigated, the robot continues to im-
plement the basic motion strategy.

D. Clues

When a clue is found, the isoprobability curves are relocated
and reconstructed. Due to this potentially significant shift,
robots return to their respective curves via the shortest paths.
This action returns the robots into the region bounded by the
new 100% contour.

E. Target Psychology

In our example implementation, a detour strategy was de-
vised to address the behavior of children between the ages of
one to six years: When lost, they tend to passively seek out
a place of shelter to lie down and sleep after an initial period
of random motion [36]. Herein, it is assumed that the possible
shelter locations within the search area are known a priori.
Consequently, the overall motion strategy redirects robots, on
the two nearest isoprobability curves within a certain radius
from each shelter location, toward the shelter for a close-up
investigation.

V. ROBUSTNESS ANALYSIS AND COMPARISON

TO A NONPROBABILISTIC APPROACH

The effectiveness of isoprobability curves is analyzed in the
following for target-behavior prediction in WiSAR scenarios.
A measure of curve-fit error is devised to test robustness to the
number of rays used. Success rates using a simple multirobot
search approach based on the proposed methodology versus a
nonprobabilistic technique are also presented.

A. Robustness

The accuracy of isoprobability curves can be improved by
increasing the number of rays, i.e., by increasing the number
of control points. One could thus conjecture that the “true” set
of isoprobability curves can be constructed only by an infinite
number of rays and that any other set would represent an
approximation. Herein, for practical purposes, the true set of
curves is defined as those resulting from the use of uniformly
distributed 360 rays. The curve-fit-error metric is defined as
the sum of the distances between corresponding points on the
360 rays intersecting the approximated and the true curves,
respectively.

A study was conducted to determine how curve-fitting errors
vary with increasing number of rays. Fig. 9 shows the plot of
error ranges, as well as the average error, for the ray-set sizes
tested. As can be noted, the errors in curve fits drop early and
rapidly for increasing ray-set sizes. Furthermore, the decrease
in the range widths and their increased overlap indicate a lack of
significant difference in error-reduction capability for relatively
larger number of rays.

In order to further analyze the effects of curve-fitting ac-
curacy, a preliminary study was conducted to determine the
impact on search success. These tests involved implementing
the simple multirobot search strategy for a WiSAR scenario
that was presented in Section IV. Since a theoretical success
rate bound could not be determined, 500 different simulations
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Fig. 9. Error ranges versus ray-set size.

TABLE II
SUMMARY OF OBSERVED SEARCH-SUCCESS RATES

(10 target speeds for each of 50 different target directions)
were conducted to establish empirical bounds. A search was
considered to have failed if the target was not found by the
2-h search time limit (Table II). The trend observed from
the study on isoprobability-curve-construction accuracy with
respect to the number of rays, in Fig. 9, is noted here as well,
namely, a rapid increase in success rates, followed by a gradual
asymptotic increase.

The aforementioned findings raise the issue of whether
optimal-ray placement, i.e., finding the minimum number of
rays and their best locations, could be beneficial. In terms of
numbers, one could conclude that computational time savings,
during curve fitting, from using lesser rays, would be insignif-
icant. Rather, it would be more beneficial to improve curve-
fit accuracy through a simple increase in the number of rays.
In terms of the locations of rays, similarly, one can note that
any potential benefit that can be achieved (i.e., error difference
between the worst and best sets of curves when comparing
relatively larger and smaller set of rays, respectively) rapidly
diminishes as the number of rays increases.

In our research, therefore, it was concluded that the more
efficient and effective approach to constructing isoprobability
curves would be to select a sufficiently large number of rays,
separate them uniformly, and randomly select the angular po-
sition of the resulting ray set. However, for a given number of
rays, the distance between rays will increase as the isoproba-
bility curves propagate outward with time, thereby effectively
decreasing the resolution of the curves and their accuracy.
Hence, one may have to increase the number of rays over time
to maintain a desired level of curve-fit error.

In order to determine how many rays are sufficient at any
time, it would be necessary to estimate how curve-fit errors
vary with time for different ray-set sizes. This may be done
using intermediate curve-fit data obtained online throughout
the search or through empirical data on typical curve-fit errors
for the given search environment, if available. Interpolation
may then be used to estimate how many rays are required at

any given point in time to maintain curve-fit error below a
maximum error threshold value.

Another source of isoprobability-curve-based target-
behavior-representation inaccuracy is the erroneous guess of
the nominal mean-target-speed PDF. If the assumed PDF is
overestimated (i.e., it extends further outward from the LKP
than would the true PDF), a theoretical maximum success
rate of 100% can still be expected, since the searcher robots
would still be distributed over the area containing the target.
Thus, given enough time, the robots, moving in a sweeping
search pattern as described earlier, would eventually find the
target. With respect to underestimation, however, the searcher
robots may fail to locate the target in some cases, so that the
accuracy of the estimated mean-target-speed PDF is the second
limitation to the isoprobability curve concept. This robustness
though can only be quantified when a fully developed search
strategy is available.

B. Comparison to a Nonprobabilistic Method

The purpose of explicitly accounting for the different aspects
of target behavior in the target-location PDFs and representing
this probabilistic information using isoprobability curves is to
provide a means to guide the search process. Thus, in order to
provide a basis for comparison, search-success rates were also
studied for a nonprobabilistic approach to search (i.e., one in
which isoprobability curves were not used).

In order to ensure fairness in the comparison, the same type
of search strategy had to be established for the two methods.
The simple strategy employed in the aforementioned robustness
tests was used herein as well to guide the search robots. In the
absence of isoprobability curves, the nonprobabilistic approach
guides the search robots on ten random circles corresponding to
the ten isoprobability curves used in the proposed method. The
speed that each curve corresponds to is selected randomly from
a uniform distribution with the upper bound equaling that of the
nominal mean-target-speed PDF.

In these simulations, a large number of rays were used
to construct the isoprobability curves, since the purpose was
solely to compare the effects of using or not using proba-
bilistic information about the target to conduct the search. For
both the nonprobabilistic and the proposed methods tested,
500 simulations were run (10 target speeds and 50 target di-
rection settings). The proposed method achieved the theoretical
maximum success rate of 100%, while the nonprobabilistic
approach was only able to obtain a 25% success rate. One
may note that this rate is even lower than that achieved by
the relatively inaccurate three-ray curve construction for the
probabilistic method (Table II). In this comparison, the num-
ber of robots, their sensing ranges, and the maximum search
time limit were all held the same so that the impact of the
only differing factor, namely, the use of probabilistic target-
location information, could be gauged. It should also be noted
that, in these simulations, the particular settings used for key
parameters, such as the number of robots and contours, as well
as the maximum search time limit, were high enough to allow
for a 100% success rate even in 500 simulations. However, in
general, this is not guaranteed.



1296 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 5, OCTOBER 2011

Fig. 10. System state at the start of search (t = 1800 s).

VI. EXAMPLE APPLICATION—AUTONOMOUS

MRC FOR WiSAR

A realistic multirobot WiSAR search scenario example is
presented here in order to demonstrate the potential use of
the proposed target-behavior prediction methodology. This ex-
ample is one of the many that were conducted, using various
parameter settings.

A. Simulated Experimental Procedure

A child target of age one to six is assumed to be lost in
a forest-type terrain that only allows ground search. Sixteen
uniformly distributed rays are used to determine ten isoprob-
ability curves to model target-motion behavior (Fig. 10). The
nominal mean-target-speed PDF is scaled online during the
search according to the calculated instantaneous terrain slope
along the 16 directions (rays).

The simulator randomly chooses a nominal target speed
(from the assumed nominal mean-target-speed PDF) and a
travel direction for the target. As the worst case scenario, the
target is assumed to move outward from the LKP without
stopping, with minor random variations to its direction and
speed in order to mimic drift. The target is given a head start
of 1800 s, representing the time taken for the searcher robots
to be deployed. The target is simulated to leave behind clues
every 300 s. After 900 s, the target starts to seek shelter and,
upon finding a shelter location, moves straight toward it via the
shortest path and remains there for the duration of the search.

A total of 19 robots are used in the search, 18 of which
are assigned to the 10 isoprobability curves according to their
proportional distances from the LKP (1-1-1-2-2-2-2-2-2-3),
while the 19th robot is restricted to stay within the area bounded
by the innermost (i.e., 10%) curve. The speed of the searcher
robots is kept constant.

TABLE III
NOMINAL ISOPROBABILITY CURVE SPEEDS USED FOR THE SIMULATION

B. Results and Discussions

For the particular example simulation presented herein, the
mean speed selected for the target was 0.17 m/s, and its initial
direction was −150◦. The target-speed variations were applied
by randomly selecting the new speed from a normal distribution
with a mean of 0.17 m/s and ±3σ = ±10% of the mean, giving
a variance of 0.0056 m/s. The direction variations were simu-
lated by applying a small randomly selected shift to the angular
direction heading of the target using a normal distribution with
a mean of 0◦ and ±3σ = ±15◦. In this way, the target’s speed
always remained within a 0.15–0.18-m/s range, averaging at
0.17 m/s, while its heading direction would change based on
the random (positive or negative) perturbations that would
regularly be added on. These random variations to both the
speed and the direction of the target were applied every 120 s.

The searcher robots maintained a constant speed of about
1.4 m/s throughout the search. Each robot also had a fixed
detection radius of 3 m for clues and 10 m for the target. Fur-
thermore, the robots changed their directions (i.e., recalculated
trajectories and headings according to the basic motion strategy
described in Section IV) every 30 s.

The assumed nominal mean-target-speed PDF used to con-
struct the isoprobability curves was taken to be a normal dis-
tribution with a mean of about μν =0.14 m/s and ±3σ ranging
from 0 to 0.28 m/s, yielding a standard deviation of about σν =
0.046 m/s. The ten isoprobability curves used ranged from 10%
to 100% in 10% increments. Table III summarizes the nominal
speeds corresponding to each isoprobability curve. The isoprob-
ability curves were propagated in time and space every 300 s.

The search was conducted using MATLAB V7, on an Intel
Core 2 Duo E4600 2.40-GHz processor. Screenshots at four
different points in time are shown in Figs. 10–13: The “×”
represents the target, the large dark dots on the curves represent
the robots, and the large lighter dots trailing the target represent
the clues (that have not been found yet). The isoprobability
curves are shown in black, where the smaller black dots indicate
the cumulative-probability (control) points on the 16 rays; the
obstacles are shown by dark hollow circles, where the dashed
circles indicate a priori unknown obstacles; and the shelter
locations are shown by squares.

The system state at the start of the search, i.e., at 1800 s, is
shown in Fig. 10. Fig. 11 shows the modification of Robot #16’s
path (indicated by the arrow and dashed circle) to account for
the shelter-seeking target psychological behavior at time 1890 s.
Fig. 12 shows the isoprobability curve modification at time
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Fig. 11. Robot-search-strategy modification to address shelter-seeking psy-
chological behavior of target (t = 1890 s).

Fig. 12. Isoprobability curve modification due to a clue find (t = 2440 s).

2440 s, 30 s after a clue is found (the arrow indicates the new
LKP). The screenshot was delayed by 30 s to allow time for the
robot that found the clue to move away from the new LKP so
that it could be seen. The target is eventually found at 3519 s.

Fig. 13 shows the complete set of paths followed by four
of the searcher robots (four thin path lines connected to four
large dots, respectively) and that by the target (thick path line
connected to the “×”). The “jumps” on the paths are the result
of isoprobability curve propagations at discrete time intervals,
or isoprobability curve relocations due to clue finds, and robots
trying to move to their new curves. An MPEG video of the
complete simulation run has also been included with this paper.

Fig. 13. Complete paths of the target and four of the searcher robots through-
out the search process (t = 3519 s).

VII. CONCLUSION

In this paper, a novel methodology for predicting target-
motion behavior for WiSAR scenarios has been presented,
with a focus on autonomous coordinated search using a
team of robots. The proposed modular methodology utilizes
the unique key concept of isoprobability curves—an efficient
means of representing the target’s probable location. Modular-
ity is achieved by independently accounting for different in-
fluences on target behavior: terrain topology, target physiology
and psychology, clues found, etc. The isoprobability curves are
propagated over time and space using the probabilistic target-
motion information in the form of a nominal mean-target-speed
PDF. Various simulations conducted, ranging from studying
curve-fitting errors to search-success rates, verified that the
proposed target-behavior prediction methodology effectively
addresses the shortcomings of earlier limited-scope approaches
reported in the search-theory literature.
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