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Abstract—This paper presents a novel method for the sched-
uling and control of flexible manufacturing cells (FMCs). The
approach employs automata, augmented by time labels proposed
herein, for the modeling of machines, transportation devices,
buffers, precedence constraints, and part routes. Ramadge–
Wonham’s supervisory-control theory is then used to synthesize
a deadlock-free controller that is also capable of keeping track
of time. For a given set of parts to be processed by the cell, A∗

search algorithm is subsequently employed using a proposed heu-
ristic function. Three different production configurations are con-
sidered: Case 1) each part has a unique route; Case 2) parts may
have multiple routes, but same devices in each route; and Case 3)
parts may have multiple routes with different devices. The pro-
posed approach yields optimal deadlock-free schedules for the
first two cases. For Case 3, our simulations have yielded effective
solutions but in practice, optimal deadlock-free schedules may not
be obtainable without sacrificing computational time efficiency.
One such nontime-efficient method is included in this paper.

The proposed approach is illustrated through three typical
manufacturing-cell simulation examples; the first adopted from
a Petri-net-based scheduling paper, the second adopted from
a mathematical-programming-based scheduling paper, and the
third, a new example that deals with a more complex FMC sce-
nario where parts have multiple routes for their production. These
and other simulations clearly demonstrate the effectiveness of the
proposed automata-based scheduling methodology.

Index Terms—Automata, deadlock-free scheduling, heuristic
search, supervisory control.

I. INTRODUCTION

S CHEDULING and control of flexible manufacturing cells
(FMCs) is a complex problem. On the one hand, due to

their flexibility in the production of multiple parts through
multiple routes, there may exist several alternative schedules
for the production of parts; on the other hand, the generated
schedules must satisfy the controller’s requirements in avoiding
deadlocks, where at least two machines await circularly for
each other to finish their respective operations, buffer overflows
or underflows, etc. In this context, schedules that satisfy the
control requirements and improve FMCs’ performances would
be highly desirable.
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Mathematical programming is a typical traditional methodol-
ogy for scheduling [1]. In [2], for example, job shop scheduling
with a single production route for each part type was formulated
as a 0/1 integer programming (0/1-IP) model with two sim-
plifying assumptions: material-handling time is negligible and
buffer space is infinite. Such impractical assumptions, however,
may result in schedules that may not be implementable for
FMCs due to potential deadlocks. In [3], an effort was made
to incorporate material-handling times and limited buffer space
into the model at the expense of increasing the numbers of de-
cision variables and constraints. Clearly, incorporating FMC’s
routing flexibility would further increase the size of the 0/1-IP
model. Despite some proposed methods for complexity reduc-
tion in solving the 0/1-IP model (e.g., [4]), the computational
complexity and difficulties to formulate all FMC characteris-
tics still remain as the two main restrictions in applying this
approach in practice.

Dispatching-rule-based heuristics have also been widely de-
veloped and proposed for scheduling, e.g., [5] and [6]. How-
ever, no one dispatching rule has been found to be dominant
[2]. Neural network [7], fuzzy logic [8], [9], simulation [10],
and decision-tree constructed based on a learning procedure
[11], [12] have been proposed to determine the best dispatching
rule out of a predefined set of rules. It has been shown that, for
a given performance criterion and a cell configuration, changing
the rules dynamically over the scheduling horizon may improve
the FMC’s performance [13]–[15]. Nevertheless, dispatching
rules, by themselves, only resolve the question of choice by
considering some part/machine attributes and inherently lack
the capability to determine optimal deadlock-free choices.

Local search methods such as simulated annealing, tabu
search, and genetic algorithm attempt to find a schedule better
than the current one through a search in the neighborhood
of the current schedule. In addition to the fact that they do
not guarantee finding the optimal schedule, their effectiveness
significantly depends on the initial schedule, the design of the
neighborhood, and the movement direction [2].

Branch-and-bound methods can obtain optimal solutions to
scheduling problems. However, enumerating large number of
nodes is their main disadvantage. Other search methods such as
filtered-beam search [16] and A∗ search algorithm [17]–[20],
which are based on branch-and-bound methods, attempt to
generate and evaluate fewer number of nodes by branching only
the most promising nodes at each stage of the search.

Since none of the search methods mentioned above can
essentially take into account the problem of deadlocks, a
deadlock-detection phase is required to be incorporated into the
search process in order to generate deadlock-free schedules.
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This must be done by precisely representing the FMC’s
discrete-event dynamic behavior to prevent encountering dead-
lock states. Petri nets (PNs) and automata are two commonly
accepted techniques that can explicitly represent FMC charac-
teristics [21]–[23].

For an FMC modeled by PNs configured to process a given
batch of parts, an optimal schedule can be obtained by generat-
ing the reachability tree and finding the optimal path from the
initial marking to the final marking based on a given measure
of performance [24]–[26]. When constructing the reachability
tree, deadlock states are designated and the paths leading to
those states are terminated to prevent the system from encoun-
tering them [27]–[29]. For example, in [20] a hybrid search,
based on an A∗ search algorithm, was applied to determine a
deadlock-free schedule with respect to the makespan criterion,
assuming that each part has only one route to be produced. For
PN methods, deadlock recognition is carried out as the schedule
is generated and thus, it has to be repeated for every new batch
of parts.

In contrast to PNs, automata theory, when used with
the supervisory-control theory developed by Ramadge and
Wonham (R–W theory) [22], would directly yield deadlock-
free FMC supervisors “by construction” [13], [30]–[32]. Such
supervisors determine formally the set of states FMC could
reach as well as the set of events allowed to occur at those states.
Therefore, the deadlock detection phase is completed once the
supervisor is generated. The supervisor can, then, explicitly
represent all possible deadlock-free sequences of events (i.e.,
schedules).

Since R–W supervisors were originally designed to empha-
size the state and event sequences FMC may undergo without
considering timing issues, they need to be time augmented for
scheduling purposes. Thus, in this paper, we propose a novel
method to augment automata with timing requirements for
FMC scheduling purposes. We employ R–W theory to construct
a deadlock-free search space to be utilized by A∗ search algo-
rithm to obtain deadlock-free schedules.

II. AUTOMATA-BASED MODELING

CONTROLLERS SYNTHESIS

A. Time-Augmented Automata

A finite-state automaton (FA) is often described by a four-
tuple FA = {Σ, Q, q0, δ(q, σ)}, [22], [33]: Σ is a finite set
of events; Q is a finite set of states; q0 is the initial state;
and δ is the transition function mapping Q× Σ to Q. The
function δ(q, σ) defines the next state for each state–event
symbol pair (q ∈ Q, σ ∈ Σ). We denote δ(q, σ)!, if δ(q, σ) is
defined, namely, σ is accepted at state q.

In order to use FA as a basic modeling tool for the scheduling
and control of an FMC, its definition needs to be augmented
with time. An integer global clock T and a variable C for each
individual automaton, for example CA for automaton A, are
proposed herein. The variable, CA, is reset to T every time
an event changes the current state of the automaton. The value
of CA provides information about the occurrence time of the
last event. A label that is a function of CA, T , and the part-

processing time is associated to each event. The value of this
label, corresponding to a given event at a given state, represents
the earliest time that it may occur. At a state where multiple
future events are possible, the comparison of the values of the
events’ labels would indicate the event that is most likely to
occur first.

The above proposed time-augmented automata (AFA) is for-
mally defined as a six-tuple AFA = {Σ, Q, q0, δ(q, σ),∆, ω},
where ∆ is a finite set of labels and ω is a one-to-one function
that maps each event σ ∈ Σ to its associated label, ω: (σ ∈
Σ) → ∆.

B. Basic Logic Operations on AFA

1) The Shuffle Operation: The shuffle operation on two
AFAs, AFA1 and AFA2, yields an AFA consisting of all
possible interleaving strings, which represents the coordinated
behavior of both AFA. Based on [32], the shuffle operation ⊗
on two AFAs, AFA1 and AFA2, is defined herein as

Shuffle(AFA1,AFA2)

= AFA1 ⊗AFA2

=

{ ⋃
n=1,2

(Σ)n, Q, q0, δ
∗(q, σ∗),

⋃
n=1,2

(∆)n, ω∗
}

(1)

where
⋃

n=1,2(Σ)n is the finite set of events defined as⋃
n=1,2(Σ)n =

∑
1 ∪

∑
2; and Q is the Cartesian product of

Q1 and Q2, Q1 ×Q2, which defines all possible global states
of the resulted AFA. A global state q ∈ Q is defined as a pair:
(qi1 ∈ Q1, qj2 ∈ Q2), where qi1 refers to State i of AFA1 and
qj2 refers to State j of AFA2; q0 is the initial global state,
q0 = (q01 , q02) ∈ Q; σ∗ is an event: σ∗ ∈ ⋃

n=1,2(Σ)n; and
δ∗ is the partial transition function, δ∗: Q× ⋃

n=1,2(Σ)n → Q
such that

δ∗ ((qi1 , qj2) , σ
∗)

=




δ1 (qi1 , σ1)x {qj2} , if δ1 (qi1 , σ1)! ∧ δ2 (qj2 , σ2)
{qi1}xδ2 (qj2 , σ2) , if δ2 (qj2 , σ2)! ∧ δ1 (qi1 , σ1)
δ1 (qi1 , σ1)xδ2 (qj2 , σ2) , if δ1 (qi1 , σ1)! ∧ δ2 (qj2 , σ2)
∅, otherwise

.

(2)

Above, ∅ represents the empty set, i.e., no transition can
occur from State (qi1 , qj2 );

⋃
n=1,2(∆)n is the finite set of la-

bels defined as
⋃

n=1,2(∆)n = ∆1 ∪∆2; and ω∗ is the function
that maps each event σ∗ ∈ ⋃

n=1,2(Σ)n to its associated label
such that

ω∗(σ∗) =
{


1 ∈ ∆1, if σ∗ ∈ ∑
1


2 ∈ ∆2, if σ∗ ∈ ∑
2
. (3)

2) The Meet Operation: The meet operation on two AFAs,
AFA1 and AFA2, yields an AFA that represents the synchro-
nized behavior of both. However, if the AFA have no common
event, ∩n=1,2(Σ)n = ∅, there is no synchronization to be
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performed and the resulting AFA is empty, i.e., an AFA with
one state and zero transition. Based on [32], the meet operation
⊕ on two AFAs is defined herein as

Meet(AFA1,AFA2)

= AFA1 ⊕AFA2

= {∩n=1,2(Σ)n, Q, q0, δ
∗(q, σ∗), ∩n=1,2(∆)n, ω∗} (4)

where Q, q0, δ∗, σ∗, and q are defined same as above, whereas
∩n=1,2(Σ)n =

∑
1 ∩

∑
2; and δ∗ is defined as

δ∗ ((qi1 , qj2) , σ
∗)

=
{

δ1 (qi1 , σ
∗)xδ2 (qj2 , σ

∗) , if δ1 (qi1 , σ
∗)! ∧ δ2 (qj2 , σ

∗)!
∅, otherwise

.

(5)

Above, ∩n=1,2(∆)n is the finite set of labels defined as
∩n=1,2(∆)n = ∆1 ∩∆2; and ω∗ is the function mapping each
event σ∗ ∈ ∩n=1,2(Σ)n to its associated label, ω∗(σ∗) = 
 ∈
∩n=1,2(∆)n.

C. AFA for Supervisor Synthesis

In R–W control theory, the synthesized supervisor represents
the unrestricted behavior of the plant, where events are divided
into two disjoint sets of controllable and uncontrollable events,
respectively. This supervisor enables or disables controllable
events such that the language (sequence of events) generated
by the closed-loop-controlled plant satisfies the plant specifi-
cations, also defined by finite automata. One notes, however,
that although an R–W supervisor represents the maximally
deadlock-free behavior of the FMC, this supervisor could in-
clude states with multiple controllable events as their outputs,
respectively. Namely, the question of choice may arise at such
states necessitating the use of a decision-making agent. These
decisions, consequently, would determine the performance of
the FMC.

1) FMC Modeling: In order to synthesize an FMC super-
visor, individual cell devices (i.e., machines, robots, etc.), part
routes, and specifications (i.e., buffer capacity, machine repair
priority, etc.) need to be modeled individually. A cell device
model represents the behavior of a workcell machine. The
model, typically consists of three states, Idle (I), Working (W),
and broken-Down (D), and four types of events, namely, Type
α for operation started, Type β for operation finished, Type λ
for machine broken-down, and Type µ for machine repaired.
Time labels are associated to events based on the processing
times. In Fig. 1, for example, at State I, two events may
occur, (α,M1,A, 1) and (α,M1,B, 2). The corresponding
time labels indicate that the earliest time one of these events
may occur is 0. At State WA, on the other hand, the time label
(β,M1,A, 1): C1 + 25− T indicates the expected time the
event (β,M1,A, 1) may occur, i.e., the end of operation on
Part A.

A basic part-route model, denoted by BPMX represents the
full production sequence for Part X. It is a sequence of states

Fig. 1. Machine model.

Fig. 2. Basic part-route model for Part A, BPMA.

and events in a treelike form, where each branch represents a
specific route. As an example, Fig. 2 illustrates the BPMA

for Part A with two alternative routes in an FMC having
two machines M1 and M2 and a robot R1 (for simplicity of
illustration, the down state of the machines and the robot were
not considered when constructing this model).

When synthesizing a supervisor, one has to consider the pos-
sibility of having multiple parts of the same type in the FMC
concurrently. In order to cope with such cases, advanced part-
route models APMX must be constructed by performing
(n− 1) shuffle operations on BPMX

APMX = BPMX1 ⊗ BPMX2 ⊗ · · · ⊗ BPMXn
(6)

where n is the maximum number of parts of type X that the
FMC can concurrently process. However, the resulting APMX

may have deadlock states, in which some or all of the parts that
are currently being processed cannot proceed to completion.
Such deadlock states are “trimmed” by deleting the transitions
leading to or coming from them. The function that determines
the deadlock states and erases them is represented by a Safe
operation [31] and the resulting model, which can trace the
history of the specific part type being concurrently produced
by the workcell, is denoted by APMs

X

APMs
X = safe (APMX). (7)

Manufacturing specifications for an FMC may be interpreted
as the desired behavior of the workcell that must be imposed
by the supervisor. Buffer overflow or underflow and machine
repair priorities are some typical examples. For instance, let us
consider a two-machine FMC, Machines M1 and M2, with
only one part type A and a buffer of capacity 1. Part A is
first processed by M1, then released to the buffer and finally
processed by M2. The buffer model shown in Fig. 3 consists



330 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 2, MARCH 2006

Fig. 3. Typical specification preventing buffer underflow and overflow.

of two states, Empty (E) and Full (F). The event (α,M2,A, 2)
is disabled at State E in order to prevent buffer underflow and
the event (α,M1,A, 1) is disabled at Sate F in order to prevent
buffer overflow, respectively.

2) Supervisor Synthesis: Once all the individual models
have been constructed, the FMC supervisor is synthesized by
performing the following sequence of logic operations

CELL = M1 ⊗ M2 ⊗ . . .⊗ Mn

PARTS = APMs
A ⊗ APMs

B ⊗ . . .⊗ APMs
K

SUPER = CELL ⊕ PARTS

For p = 1 to number of specifications

SUPER = SUPER ⊕ SPECp

End for. (8)

Above, CELL is the unconstrained behavior of FMC,
PARTS represents all possible sequences in which parts
A,B,C, . . . ,K can be concurrently processed, SPECp is the
pth specification, and SUPER is an AFA that restricts the
unconstrained behavior of FMC to only those that can satisfy
PARTS and all SPECp simultaneously. The time labels in
SUPER enable us to keep track of time and determine the
most likely event to occur at each state of the model.

III. FMC SCHEDULING USING AFA SUPERVISOR

Given an FMC and a set of parts to be produced, the schedul-
ing problem is to find a sequence of decisions for manufacturing
the parts that optimizes a measure of performance. This can
be considered as a search of a node-decision tree where at
each decision-making instance, represented by a node, multiple
controllable events are available to the decision maker to choose
from. The initial node represents the start of the scheduling
problem and the goal node is the node where all the parts have
been manufactured. Any path that starts at the initial node and
ends at the final node represents a solution to the scheduling
problem.

In this section, an efficient methodology is proposed to
generate a partial node-decision tree required to search for
optimal deadlock-free decisions with respect to makespan as
the performance criterion. This is achieved by using jointly the
AFA supervisor and an A∗ search algorithm. The direction of
node generation is determined by the “promise” of the node,
which is estimated by a heuristic function. The most promising
direction is evaluated first. Once a direction is selected, the AFA
supervisory model is used to determine the next decision node,
the time it would be reached, and the possible choices available

at that node. When the goal node is reached, tracing back from
the goal node to the initial node yields the schedule.

A. Node Generation

The state of the given batch, together with the state of
the supervisor SUPER determines the stage (node) of the
FMC scheduling problem. We denote a node i by a pair Ni =
(Lj , Sk), where Lj denotes the state of the given batch (j = 0
to the number of possible states of the batch) and Sk denotes
the state of the supervisor (k = 0 to the number of states in
the SUPER). For example, for an FMC capable of producing
three part types A, B, and C, the string L0 = [2 3 4] depicts the
initial state of the batch, namely, at State 0 the batch consists
of 2, 3, and 4 units of A, B, and C, respectively. The state
of the batch changes once the FMC starts to operate (e.g.,
L1 = [1 3 4], L1 = [2 2 4], or L1 = [2 3 3]) depending on the
decision made by the scheduler regarding which part type to
process first.

With the above nomenclature, the initial node of the schedul-
ing problem is denoted by N0 = (L0, S0): the batch and the
supervisor are at their initial states, where S0 indicates that
all the FMC’s devices are idle. The goal node is denoted by
Ng = (Lg, S0), where Lg = [0 0 0]. The scheduling problem
with respect to makespan is, thus, defined as finding a sequence
of nodes that minimizes the time needed to reach Ng from N0.

At a given node, the α-type events (i.e., start of operations)
that are allowed to occur by the controller represent the deci-
sions available to the scheduler. For α-type events associated
with the first operation of a part, the existence of the part
in the batch must be also examined. One can recall that the
execution of the controller only generates deadlock-free nodes.
The clock structure and labels, defined in the SUPER, keep
track of time, determine the time β-type events (i.e., completion
of operations) may happen, and finally, compute the time taken
to reach successive decision nodes.

B. Heuristic Function

The cost function F(N), computed for a node N , guides
the direction of the search [34]. When using makespan as
the performance criterion, F(N) is defined as the estimated
completion time of all the parts via an optimal path, starting
at the initial node and ending at the goal node while passing
through the node N : F(N) = G(N) +H(N). The term G(N),
which is the time required to reach node N from the initial
node, is computed based on the execution of the search over the
AFA supervisor. The term H(N), referred to as the heuristic
function, is an estimate of the time required to reach the goal
node from the current node N .

The minimum time to reach the goal node H∗(N) is not
known at node N . With the A∗ search algorithm, any heuristic
function that satisfies H(N) ≤ H∗(N), for all N , guarantees
obtaining the optimal solution [34]. Setting H(N) equal to zero
for all N , as a possible inefficient option, leads the search to
obtain the optimal solution, but at a cost of extensive node
generation and thus, computation complexity. The closer the
value derived from the heuristic function is to H∗(N), the fewer
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the number of node expansions. Hence, it is desirable to employ
a heuristic function that yields values less than or equal (as close
as possible) to H∗ for all nodes and that can be computed by the
information encoded by the node.

We employ the following heuristic for the makespan.
Step 1) At a given node N , consider all the parts that are

either waiting in the batch or those that are being
processed by the FMC.

Step 2) Calculate the sum of the operation times of those
remaining operations for the parts specified in Step 1
on each device of the FMC (machine, robot, etc.).
a) When each part has a unique route, the process-

ing time on each machine is considered (Case 1).
b) When some parts have multiple routes, but the

required devices in each alternative route are
the same, the minimum processing time on each
machine is considered for the machine (Case 2).

c) When some parts have multiple routes, but with
a different set of required devices, the average of
times taken by each machine is considered for the
machine (Case 3).

Step 3) Let Ui(N) be the total time required for Device i at
node N . H(N) is then equal to maxi{Ui(N)}.

C. Search Algorithm

The following algorithm is proposed for deadlock-free FMC
scheduling. It employs a A∗ search algorithm that utilizes the
AFA supervisor SUPER for node generation. The algorithm
starts with the initial node. At each step of the search, the most
promising node that has been generated so far is selected. The
promise of a node, i.e., the direction of node expansion, is de-
termined by the proposed heuristic function. Then, the node is
expanded using SUPER. If one of the proceeding nodes is the
goal node, the algorithm stops and the solution is determined by
tracing back from the goal node to the initial node; otherwise,
the nodes are added to a list for further exploration. In order to
distinguish between nodes that have been explored and those
that have been generated but not yet explored, they are placed
into two separate lists OPEN and CLOSED, respectively.

1) Place the initial node N0 into OPEN. Set the system clock
T to zero.

2) Retrieve from OPEN the node N for which F has the
minimum value and place it into CLOSED. In the case of
multiple choices, select one arbitrarily.
a) If node N is the goal node, stop. The solution is

obtained by tracing back the pointers from current N
to N0.

b) Otherwise, using SUPER, consider all possible
events that are allowed to occur at node N and gen-
erate their proceeding node(s), N ′, using SUPER.
Assign pointers back to N .

3) For each N ′ compute F (N ′) and TN ′ .
a) If N ′ was neither in OPEN nor in CLOSED, add it

to OPEN. Assign the newly computed F (N ′) and TN ′

to it.
b) Otherwise, compare the newly computed F (N ′) with

the previously assigned value. If the old value is

lower, discard the new one. If the new value is lower,
substitute it for the old one. If the matching node N ′

was in CLOSED, move it back to OPEN.

Return to Step 2).
In Step 2b), all the controllable events enabled at the cur-

rent state of SUPER are considered as possible expansions.
Having selected each event one at a time, the next state of the
system is determined using SUPER (state of the batch also
changes if the event is associated to the first operation of the
part). If the new state is a decision state (a state with more than
one controllable event), it represents a new node. Otherwise, at
the new state, the values of all labels are calculated. The event
with the minimum value is selected as if it were to happen once
the workcell reaches the new state. This is repeated until a new
decision state, a new node, is reached.

D. Optimality of Solutions

The A∗ search algorithm guarantees obtaining the optimal
solution if H(N) ≤ H∗(N), for all nodes N [34]. H(N) is an
estimation of the time to finish all the remaining operations
of all the parts existing at node N and H∗(N) is the actual
minimum one. Clearly, H∗(N) is greater than or equal to
maxi{Ui(N)}, where Ui(N) is the total remaining workload
on Machine i. Namely, H∗(N) cannot be less than the time the
busiest device requires to finish its assigned operations. This
fact allowed us to develop a heuristic function that calculates
the remaining workload on each device to obtain the maximum
workload as an estimation for H∗(N). One can note that the set
of remaining parts at each node is determined by the state of the
batch together with the state of the supervisor.

In Case 1 of the heuristic, the calculation of the remaining
workload on each machine is straightforward since each part
type in this specific case has a unique route and therefore, the
maximum workload will not exceed H∗(N). In Cases 2 and
3 where parts have multiple routes, the remaining workload
on each machine depends on how parts are assigned to their
possible routes. Clearly, the assignment that minimizes the
maximum workload among all devices yields a value for the
heuristic function less than or equal to H∗(N). This part-to-
route assignment problem can be formulated via an IP model

minZ = max
k




I∑
i=1

Ji∑
j=1

TijkXij


 k = 1, 2, . . . ,K

Ji∑
j=1

Xij = Di i = 1, 2, . . . , I

Xij ≥ 0 and integer. (9)

Above, the decision variable Xij determines the number of
parts of Type i allocated to Route j, I is the total part types
and Di (i = 1, 2, . . . , I) is the number of units of part Type i at
node N , Ji is the number of possible routes for the production
of part Type i, K is the number of devices within FMC, and Tijk

is the operation time of part Type i using Route j on Device k
(k = 1, 2, . . . ,K).
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The objective function in (9) is linearized as follows:

minZ = y

Subject to :
Ji∑

j=1

Xij = Di i = 1, 2, . . . , I

I∑
i=1

Ji∑
j=1

TijkXij ≤ y k = 1, 2, . . . ,K

y ≥ 0, Xij ≥ 0 and integer. (10)

The solution of the above IP model determines the optimal
assignments of parts to their alternative routes that minimize
the maximum potential workload among all devices. The value
of Z is clearly less than or equal to H∗(N) and can guarantee
the A∗ search obtaining the optimal solution for the original
scheduling problem in Cases 2 and 3, where parts have multiple
routes. However, it requires solving the IP model at all nodes,
which obviously increases the computation complexity. Instead
of solving the IP model at each node, the proposed heuristic
function estimates the maximum workload for both cases.

In Case 2, where parts have multiple routes and the required
devices in each alternative route are the same, the heuristic
assumes that whenever a part visits a device, no matter which
route has been taken by the part, it is processed in the minimum
possible time the part may spend at the current device. This
can be thought of as if the part has only one route but with
its associated minimum processing times. With this optimistic
assumption, the maximum workload derived by the heuristic
is clearly less than the workload derived by the IP model Z
due to the fact that the least processing times are assumed in
the calculations. Subsequently, this workload is less than the
H∗(N) and thus, the A∗ search algorithm yields the optimal
solution.

In Case 3, where parts have multiple routes and the required
devices are different, the computation of the maximum work-
load is carried out assuming that parts are equally assigned to
their potential routes. Thus, the estimation of maximum work-
load obtained from the heuristic function may be greater than
the one that is derived from the IP model Z. However, one
may note that a value greater than Z does not necessarily mean
that it is greater than H∗(N). Since H∗(N) is the optimal
completion time of all remaining operations at node N , this
time, for most realistic cases, is much more than Z, namely,
the minimum of maximum potential workloads. This is due to
the fact that the priority requirements among the operations
and the FMC’s limited buffers cause delays in operations.
Therefore, since there might be some instances where the value
calculated by the heuristic exceeds H∗(N), the search might
not be able to generate the optimal solution, but it is most likely
to find practically acceptable solutions in this specific case.

IV. SIMULATION EXAMPLES

In order to illustrate that the proposed approach can per-
form well under a variety of FMC configurations, several
simulation examples were tested on a Dell Dimension 4300

Fig. 4. Layout of the workcell.

TABLE I
SEQUENCE OF OPERATIONS FOR PARTS A AND B

computer, 1.5-GHz Pentium 4 with 128 MB random access
memory. Three of these examples are presented in this Section.
The first two examples, adopted from [20] and [3], a PN-
and mathematical-programming-based scheduling approach,
respectively, deal with Case 1, where each part has a single
route. Example 3, where parts have multiple routes, is presented
to illustrate the effectiveness of the proposed approach under
Case 2, Case 3, and all combinations of the three Cases.

A. Example 1

Let us consider a three-machine and three-robot workcell,
adopted from [20], with two types of parts, A and B, each
having one route. The layout of the workcell is shown in Fig. 4.
The sequence and processing times for each operation on each
machine corresponding to each part type are given in Table I.
As in [20], loading and unloading times are neglected.

Based on the modeling method described in Section II,
the individual device models were derived first (for the sake
of simplicity of illustration, down states were not considered in
this example), as seen in Fig. 5, where CELL = M1 ⊗ M2 ⊗
M3 ⊗ R1 ⊗ R2 ⊗ R3. Subsequently, the basic part-route
models for Parts A and B, BPMA and BPMB, were derived,
as seen in Fig. 6. Since the workcell can hold a maximum of
six parts of each type at any time, the automaton APMs

A =
safe(BPMA ⊗ BPMA ⊗ BPMA ⊗BPMA ⊗ BPMA ⊗
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Fig. 5. Top row: Models for machine M1, M2, and M3. Bottom row: Models for robot R1, R2, and R3. For simplicity, labels in robot models are not shown.

Fig. 6. Basic part-route models for Parts A and B.

TABLE II
SEARCH RESULTS FOR BATCHES

BPMA). APMs
B is modeled similarly. Thus, PARTS =

APMs
A⊗APMs

B. Three manufacturing constraints SPEC1,
SPEC2, and SPEC3 were considered next. They ensure that
a machine can start its operations only when the corresponding
robot has loaded the machine. They also ensure that a robot
cannot load a machine with a new part unless the previous part
has been unloaded. Finally, the automaton SUPER, represent-
ing the supervisor, was obtained using (8). It represents the
deadlock-free behavior of the workcell, while having 656 states
and 1638 transitions. The time spent by the Synthesiser Module
to generate this automaton was 56 s.

As in [20], batch sizes of 1, 2, 5, and 10 (for each part type),
respectively, were considered. Table II presents the makespan,
the number of nodes generated, and the computation time
required finding the solution for each batch size. One should
note that, in [20], computation times were not provided.

As an example, let us consider the batch size of 1, i.e.,
one unit of each part types A and B. Fig. 7 shows the node-
decision graph generated by performing the search algorithm.
The algorithm starts at node 1, the initial node. This node
is denoted by N1 = (0, [1, 1]) representing the state of the
SUPER, 0, and the state of the batch, [1,1], i.e., one unit of
each part type. Time T is zero. G(1), the time spent to reach
the node 1 from the initial node, is clearly zero. According to
the heuristic function, in order to find the value of H(1), the
workload on each device is calculated first

[UM1 UM2 UM3 UR1 UR2 UR3] =[1 1]
[
5 8 2 0 0 0
3 9 7 0 0 0

]

=[8 17 9 0 0 0].

Thus, H(1) = max (8, 17, 9, 0, 0, 0) = 17 and F(1) =
G(1) +H(1) = 17. According to the algorithm, this node is
placed into OPEN, Step 1). Among the nodes in OPEN, a
node with the minimum value of F is removed and placed into
CLOSED. Node 1 is removed, Step 2). Case 2a) is not satisfied
since it is not the goal node, Ng = (0, [0, 0]). According to
Step 2b), controllable events allowed at the current state
of SUPER are considered, (α,R1,A, 1) and (α,R2,B, a).
For each possible decision, the next decision node is deter-
mined using SUPER, nodes 2 and 3. Then, for each newly
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Fig. 7. Nodes generated by the search algorithm for batch size of 1.

TABLE III
OPTIMAL SCHEDULE FOR BATCH OF 1

generated nodes, the F values, F(2) and F(3), are computed,
Step 3). Since neither node 2 nor 3 are in OPEN, they are
added to OPEN, Step 3a). The process is repeated by removing
the node with the minimum value of F , node 2, from OPEN.
Expansion of node 2 generates nodes 4 and 5 and thus, F(4) =
22 and F(5) = 17. Again, node 3 is evaluated, which leads
to the same nodes, 4 and 5. At this point, the node with the
minimum value of F is node 5. The evaluation of this node
leads to node 4. Then, node 4 is removed for evaluation. Two
nodes, 6 and 7 are generated. Since node 7 is the goal node,
the search process stops and the optimal schedule is obtained
by tracing back from State 7, to 4, to 2, and finally to 1. The
optimal schedule for batch size of 1 is given in Table III.

As stated above, the major role of the supervisor in the
search process is to determine the deadlock-free sequence of
events between each pair of nodes as well as the time required
to reach a node from the others. For example, at node 4, the
selection of the controllable Event (α,M3,A, 6) is allowed by
the supervisor. One may note that α-type events, which are
controllable events, can be immediately scheduled when the
supervisor allows them. Selection of this event by the search
algorithm leads the workcell to reach State 238. At this state,
Event (α,R3,B, e), which also is a controllable event, is the
only choice. Selection of this event subsequently leads the
workcell to State 255, where only the uncontrollable Event
(β,R3,B, e) may happen. Here, there is no decision to be
made. One may note, however, that the search determines the
time β-type events happen, using labels and variables defined
in Section II-C-1. Once (β,R3,B, e) happens the workcell
reaches State 300. This determination of succeeding states and
their corresponding occurrence time is repeated until either a
new decision node or the goal node is reached.

B. Example 2

Let us consider a workcell more complex than the one in
Example 1: a three-machine and one-robot workcell with four
types of parts, A, B, C, and D, each having one route, as
adopted from [3]. The layout of the workcell is shown in Fig. 8.
The sequence and processing times for each operation on each
machine corresponding to each part type are given in Table IV.
The automaton SUPER for this example consists of 1360
states and 3064 transitions. It was obtained in 115 s. Optimal
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Fig. 8. Layout of the workcell.

TABLE IV
SEQUENCE OF OPERATIONS FOR PARTS A, B, C, AND D

TABLE V
SCHEDULING RESULTS FOR DIFFERENT BATCHES

makespan for different batches are shown in Table V. One can
note that since constructing SUPER is independent of the
batch sizes, there is no need to change or reconstruct SUPER
for each new batch. In [3], a problem of batch size of 1 (1, 1,
1, 1), one unit of each part types was formulated and solved on
a Sun Sparc 20 computer in 67 s. The optimal makespan found
for this batch was 560. As shown in Table V, the same result
was obtained by our method. The time spent to find the optimal
schedule for this batch was 2.3 s on our computer.

C. Example 3

The computation of the heuristic function for three different
part-processing cases was explained in Section III-B. In the
above two examples, however, only Case 1 was examined. The
example in this Section, on the other hand, is introduced to illus-
trate the effectiveness of the proposed algorithm under Case 2,
Case 3, as well as combinations of Case 1, Case 2, and Case 3.
Let us assume that the workcell shown in Fig. 8 is capable to
produce three part types A, B, and C. Part A has only one
route for its production, i.e., Case 1. Part B has two routes but
the required devices in both routes are the same, i.e., Case 2, and
Part C has three routes and the required devices in each route

TABLE VI
SEQUENCE OF OPERATIONS FOR PARTS A, B, AND C

are different, i.e., Case 3. The sequence and processing times
for each operation on each machine corresponding to each part
type and each route are given in Table VI. The automaton
SUPER for this example consists of 1773 states and 4520
transitions. It was obtained in 210 s.

In order to illustrate effectiveness of the heuristic function in
reducing the number of nodes required to generate a solution,
first, the search algorithm was executed assuming that the value
of H is equal to zero for all nodes, i.e., not using the heuristic
function. Next, solutions for the same batches were obtained
using the proposed heuristic function. The results are given in
Table VII.

Batches corresponding to Rows 1–4 in Table VII use only
part type B, i.e., Case 2. As expected, the makespan found
when H#0 is equal to the optimal one, when H = 0. In Rows
5–8, the batches use part types A and B, i.e., Case 1 and
Case 2, respectively. As expected, the search with the proposed
heuristic function yielded the optimal solution. One notes that
the percentage of node reduction significantly increases as the
number of parts within the batch increases. As discussed in
Section III-D, for Case 3, for most FMC configurations, the
use of the heuristic function may yield the optimal makespan.
However, there might be instances where the value derived by
the heuristic function exceeds H∗ and consequently, the search
may not yield the optimal makespan, though it is likely to
find acceptable solutions. To demonstrate this situation, batches
corresponding to Rows 9–23 were simulated. The searches with
the heuristic function yielded makespans either equal to or
comparable to optimal values, while providing node reductions
in the range of 38%–96%.

D. Discussion

In PN-based methods, deadlock detection is part of the
scheduling process. Namely, as the reachability tree is gener-
ated, the deadlock states are designated to prune for further
expansions as well as the paths leading to them. Thus, the time
spent to obtain a deadlock-free schedule, for a given batch of
parts, includes the time required to model the FMC as well as
the generation of the reachability tree, deadlock detection, and
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TABLE VII
SEARCH RESULTS FOR BATCHES

node evaluation. For further batches, this process must be re-
peated. In our proposed method, on the other hand, a deadlock-
free search space (SUPER) is first constructed to represent
the FMC behavior. Then, for a given batch, nodes are generated
and evaluated. Since nodes are generated using SUPER, they
are already deadlock free. Thus, the time to obtain a schedule
consists of the time spent on creating SUPER, generating the
nodes, and performing the evaluation. One can note that for
the next batches of parts, no time will be spent creating the
SUPER.

In Table II, it was shown that the number of nodes generated
by our proposed approach is less than that of PN. The reduction
is due to the fact that the constructed supervisor, employed by
the search procedure, allows the generation of only deadlock-
free nodes as opposed to the PN-based method, where the
search procedure has to generate all possible nodes, designate
deadlock nodes, and then proceed with nodes that are deadlock
free. However, according to the above discussion, it would
be difficult to conclude which approach is more efficient. In
order to reach an indisputable conclusion, one would have
to simulate a large number of FMC scenarios using all three
approaches.

One must also note that in an automata-based control envi-
ronment, the derivation of the supervisor is inherently necessary
for PLC-based supervisory control, regardless of whether it is
to be used for scheduling purposes as well or not. Furthermore,
as the production proceeds, the time spent on constructing the
SUPER is distributed among all future batches and thus, it
becomes negligible.

V. CONCLUSION

This paper proposed a new automata-theory-based ap-
proach for deadlock-free scheduling of FMCs. The concept
of supervisory-control theory is extended to the scheduling
problem by augmenting the automata with time labels. An A∗

search algorithm that employs a heuristic function is employed
to search for the optimal deadlock-free schedules subject to
makespan as the performance criterion.

Three different part-processing requirements were consid-
ered. In Case 1, where each part has a unique route to be
produced, the search algorithm yields the optimal solution. For
Case 2, where parts have multiple routes and required devices
on each route are the same, the search also yields the optimal
solution. In Case 3, where each route requires different devices,
the search procedure may not yield the optimal solution, but
simulations have shown promising results.

The major advantage of using the constructed supervisor
is that it is deadlock free by construction and is independent
of the batch information. This allows the search procedure to
generate only deadlock-free nodes and prevent repeating the
deadlock-detection phase for further batches of parts, which is
not the case in PN-based or mathematical-programming-based
deadlock-free scheduling approaches.
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